These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 29064244)

  • 21. Probing insertion and solubilization effects of lysolipids on supported lipid bilayers using microcantilevers.
    Liu KW; Biswal SL
    Anal Chem; 2011 Jun; 83(12):4794-801. PubMed ID: 21604691
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipopolysaccharides in bacterial membranes act like cholesterol in eukaryotic plasma membranes in providing protection against melittin-induced bilayer lysis.
    Allende D; McIntosh TJ
    Biochemistry; 2003 Feb; 42(4):1101-8. PubMed ID: 12549932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-stable temperature control in EPR experiments: thermodynamics of gel-to-liquid phase transition in spin-labeled phospholipid bilayers and bilayer perturbations by spin labels.
    Alaouie AM; Smirnov AI
    J Magn Reson; 2006 Oct; 182(2):229-38. PubMed ID: 16859937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics and thermodynamics of the association of dehydroergosterol with lipid bilayer membranes.
    Estronca LM; Moreno MJ; Vaz WL
    Biophys J; 2007 Dec; 93(12):4244-53. PubMed ID: 17766353
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints.
    Murtola T; Falck E; Karttunen M; Vattulainen I
    J Chem Phys; 2007 Feb; 126(7):075101. PubMed ID: 17328634
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of cholesterol and ergosterol on the compressibility and volume fluctuations of phospholipid-sterol bilayers in the critical point region: a molecular acoustic and calorimetric study.
    Krivanek R; Okoro L; Winter R
    Biophys J; 2008 May; 94(9):3538-48. PubMed ID: 18199673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different effects of long- and short-chain ceramides on the gel-fluid and lamellar-hexagonal transitions of phospholipids: a calorimetric, NMR, and x-ray diffraction study.
    Sot J; Aranda FJ; Collado MI; Goñi FM; Alonso A
    Biophys J; 2005 May; 88(5):3368-80. PubMed ID: 15695626
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study.
    Li Y; Gu N
    J Phys Chem B; 2010 Mar; 114(8):2749-54. PubMed ID: 20146444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchrotron SAXS and WAXS study of the interactions of NSAIDs with lipid membranes.
    Nunes C; Brezesinski G; Lima JL; Reis S; Lúcio M
    J Phys Chem B; 2011 Jun; 115(24):8024-32. PubMed ID: 21598995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Changes of dipole potential of phospholipid membranes resulted from flavonoid adsorption].
    Ostroumova OS; Efimova SS; Shchagina LV
    Biofizika; 2013; 58(3):474-80. PubMed ID: 24159816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biophysical changes induced by xenon on phospholipid bilayers.
    Booker RD; Sum AK
    Biochim Biophys Acta; 2013 May; 1828(5):1347-56. PubMed ID: 23376329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Coverage and disruption of phospholipid membranes by oxide nanoparticles.
    Pera H; Nolte TM; Leermakers FA; Kleijn JM
    Langmuir; 2014 Dec; 30(48):14581-90. PubMed ID: 25390582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calorimetric and spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylglycerol bilayer membranes.
    McMullen TP; Lewis RN; McElhaney RN
    Biochim Biophys Acta; 2009 Feb; 1788(2):345-57. PubMed ID: 19083990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular simulation study of the influence of small molecules on the dynamic and structural properties of phospholipid bilayers.
    Sum AK
    Chem Biodivers; 2005 Nov; 2(11):1503-16. PubMed ID: 17191950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature dependence of polypeptide partitioning between water and phospholipid bilayers.
    Russell CJ; Thorgeirsson TE; Shin YK
    Biochemistry; 1996 Jul; 35(29):9526-32. PubMed ID: 8755733
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NSAIDs interactions with membranes: a biophysical approach.
    Nunes C; Brezesinski G; Pereira-Leite C; Lima JL; Reis S; Lúcio M
    Langmuir; 2011 Sep; 27(17):10847-58. PubMed ID: 21790169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lipid vesicle adsorption versus formation of planar bilayers on solid surfaces.
    Nollert P; Kiefer H; Jähnig F
    Biophys J; 1995 Oct; 69(4):1447-55. PubMed ID: 8534815
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of the polar headgroup of phospholipids on their interaction with actin.
    Le Bihan T; Pelletier D; Tancrède P; Heppell B; Chauvet JP; Gicquaud CR
    J Colloid Interface Sci; 2005 Aug; 288(1):88-96. PubMed ID: 15927566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calorimetric detection of curvature strain in phospholipid bilayers.
    Epand RM; Epand RF
    Biophys J; 1994 May; 66(5):1450-6. PubMed ID: 8061194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.