These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 29064377)
1. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration. Lee SJ; Zhu W; Nowicki M; Lee G; Heo DN; Kim J; Zuo YY; Zhang LG J Neural Eng; 2018 Feb; 15(1):016018. PubMed ID: 29064377 [TBL] [Abstract][Full Text] [Related]
2. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. Sang S; Cheng R; Cao Y; Yan Y; Shen Z; Zhao Y; Han Y J Zhejiang Univ Sci B; 2022 Jan; 23(1):58-73. PubMed ID: 35029088 [TBL] [Abstract][Full Text] [Related]
3. Fabrication and characterisation of 3D printed MWCNT composite porous scaffolds for bone regeneration. Huang B; Vyas C; Roberts I; Poutrel QA; Chiang WH; Blaker JJ; Huang Z; Bártolo P Mater Sci Eng C Mater Biol Appl; 2019 May; 98():266-278. PubMed ID: 30813027 [TBL] [Abstract][Full Text] [Related]
4. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Zhu W; Ye T; Lee SJ; Cui H; Miao S; Zhou X; Shuai D; Zhang LG Nanomedicine; 2018 Oct; 14(7):2485-2494. PubMed ID: 28552650 [TBL] [Abstract][Full Text] [Related]
5. Three-dimensional electroconductive carbon nanotube-based hydrogel scaffolds enhance neural differentiation of stem cells from apical papilla. Liu J; Zou T; Zhang Y; Koh J; Li H; Wang Y; Zhao Y; Zhang C Biomater Adv; 2022 Jul; 138():212868. PubMed ID: 35913250 [TBL] [Abstract][Full Text] [Related]
6. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering. Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161 [TBL] [Abstract][Full Text] [Related]
7. Direct 3D printing of a tough hydrogel incorporated with carbon nanotubes for bone regeneration. Cui H; Yu Y; Li X; Sun Z; Ruan J; Wu Z; Qian J; Yin J J Mater Chem B; 2019 Dec; 7(45):7207-7217. PubMed ID: 31663588 [TBL] [Abstract][Full Text] [Related]
8. Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Huang YJ; Wu HC; Tai NH; Wang TW Small; 2012 Sep; 8(18):2869-77. PubMed ID: 22753249 [TBL] [Abstract][Full Text] [Related]
9. 3D-printed scaffolds with carbon nanotubes for bone tissue engineering: Fast and homogeneous one-step functionalization. Liu X; George MN; Park S; Miller Ii AL; Gaihre B; Li L; Waletzki BE; Terzic A; Yaszemski MJ; Lu L Acta Biomater; 2020 Jul; 111():129-140. PubMed ID: 32428680 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning. Lee SJ; Nowicki M; Harris B; Zhang LG Tissue Eng Part A; 2017 Jun; 23(11-12):491-502. PubMed ID: 27998214 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Shin J; Choi EJ; Cho JH; Cho AN; Jin Y; Yang K; Song C; Cho SW Biomacromolecules; 2017 Oct; 18(10):3060-3072. PubMed ID: 28876908 [TBL] [Abstract][Full Text] [Related]
12. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration. Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017 [TBL] [Abstract][Full Text] [Related]
13. The cellular response of nerve cells on poly-l-lysine coated PLGA-MWCNTs aligned nanofibers under electrical stimulation. Wang J; Tian L; Chen N; Ramakrishna S; Mo X Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():715-726. PubMed ID: 30033306 [TBL] [Abstract][Full Text] [Related]
14. Directed and enhanced neurite outgrowth following exogenous electrical stimulation on carbon nanotube-hydrogel composites. Imaninezhad M; Pemberton K; Xu F; Kalinowski K; Bera R; Zustiak SP J Neural Eng; 2018 Oct; 15(5):056034. PubMed ID: 30051883 [TBL] [Abstract][Full Text] [Related]
16. TEGylated Double-Walled Carbon Nanotubes as Platforms to Engineer Neuronal Networks. Barrejón M; Zummo F; Mikhalchan A; Vilatela JJ; Fontanini M; Scaini D; Ballerini L; Prato M ACS Appl Mater Interfaces; 2023 Jan; 15(1):77-90. PubMed ID: 36270018 [TBL] [Abstract][Full Text] [Related]
17. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds. Bilge S; Ergene E; Talak E; Gokyer S; Donar YO; Sınağ A; Yilgor Huri P J Mater Sci Mater Med; 2021 Jun; 32(7):73. PubMed ID: 34152502 [TBL] [Abstract][Full Text] [Related]
18. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering. Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655 [TBL] [Abstract][Full Text] [Related]
19. Neurite outgrowth of dorsal root ganglia neurons is enhanced on aligned nanofibrous biopolymer scaffold with carbon nanotube coating. Jin GZ; Kim M; Shin US; Kim HW Neurosci Lett; 2011 Aug; 501(1):10-4. PubMed ID: 21723372 [TBL] [Abstract][Full Text] [Related]
20. Effective nerve cell modulation by electrical stimulation of carbon nanotube embedded conductive polymeric scaffolds. Zhou Z; Liu X; Wu W; Park S; Miller Ii AL; Terzic A; Lu L Biomater Sci; 2018 Aug; 6(9):2375-2385. PubMed ID: 30019709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]