BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29064457)

  • 1. Detection of Stress Levels from Biosignals Measured in Virtual Reality Environments Using a Kernel-Based Extreme Learning Machine.
    Cho D; Ham J; Oh J; Park J; Kim S; Lee NK; Lee B
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29064457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of multiple stress levels in virtual reality environments using heart rate variability.
    Jinsil Ham ; Dongrae Cho ; Jooyoung Oh ; Boreom Lee
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3989-3992. PubMed ID: 29060771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Wearable Head Mounted Display Bio-Signals Pad System for Emotion Recognition.
    Wan C; Chen D; Huang Z; Luo X
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of coronary artery disease by reduced features and extreme learning machine.
    Singh RS; Saini BS; Sunkaria RK
    Clujul Med; 2018; 91(2):166-175. PubMed ID: 29785154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Immediate Effects of Immersive Virtual Reality on Autonomic Nervous System Function in Patients with Disorders of Consciousness after Severe Acquired Brain Injury: A Pilot Study.
    Reale G; Fusco A; Calciano R; Vallario N; Vagnarelli G; Caliandro P; Castelli L; Moci M; Tieri G; Iasevoli L; Padua L
    J Clin Med; 2023 Dec; 12(24):. PubMed ID: 38137708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pure purr virtual reality technology: measuring heart rate variability and anxiety levels in healthy volunteers affected by moderate stress.
    Aganov S; Nayshtetik E; Nagibin V; Lebed Y
    Arch Med Sci; 2022; 18(2):336-343. PubMed ID: 35316901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of Specific Anxiety Symptoms and Virtual Reality Sickness Using In Situ Autonomic Physiological Signals During Virtual Reality Treatment in Patients With Social Anxiety Disorder: Mixed Methods Study.
    Chun JY; Kim HJ; Hur JW; Jung D; Lee HJ; Pack SP; Lee S; Kim G; Cho CY; Lee SM; Lee H; Choi S; Cheong T; Cho CH
    JMIR Serious Games; 2022 Sep; 10(3):e38284. PubMed ID: 36112407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Signal Analysis and Stress Classification from VR Simulations Using Decision Tree Methods.
    Ishaque S; Khan N; Krishnan S
    Bioengineering (Basel); 2023 Jun; 10(7):. PubMed ID: 37508793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrodermal Activity for Measuring Cognitive and Emotional Stress Level.
    Rahma ON; Putra AP; Rahmatillah A; Putri YSKA; Fajriaty ND; Ain K; Chai R
    J Med Signals Sens; 2022; 12(2):155-162. PubMed ID: 35755979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An Intelligent Virtual-Reality System With Multi-Model Sensing for Cue-Elicited Craving in Patients With Methamphetamine Use Disorder.
    Tsai MC; Chung CR; Chen CC; Chen JY; Yeh SC; Lin CH; Chen YJ; Tsai MC; Wang YL; Lin CJ; Wu EH
    IEEE Trans Biomed Eng; 2021 Jul; 68(7):2270-2280. PubMed ID: 33571085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sex Differences in Stress Reactivity to the Trier Social Stress Test in Virtual Reality.
    Liu Q; Zhang W
    Psychol Res Behav Manag; 2020; 13():859-869. PubMed ID: 33154681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosensor Real-Time Affective Analytics in Virtual and Mixed Reality Medical Education Serious Games: Cohort Study.
    Antoniou PE; Arfaras G; Pandria N; Athanasiou A; Ntakakis G; Babatsikos E; Nigdelis V; Bamidis P
    JMIR Serious Games; 2020 Sep; 8(3):e17823. PubMed ID: 32876575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trends in Heart-Rate Variability Signal Analysis.
    Ishaque S; Khan N; Krishnan S
    Front Digit Health; 2021; 3():639444. PubMed ID: 34713110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of physiological signals for recognition of boredom, pain, and surprise emotions.
    Jang EH; Park BJ; Park MS; Kim SH; Sohn JH
    J Physiol Anthropol; 2015 Jun; 34(1):25. PubMed ID: 26084816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine-Deep-Ensemble Learning Model for Classifying Cybersickness Caused by Virtual Reality Immersion.
    Oh S; Kim DK
    Cyberpsychol Behav Soc Netw; 2021 Nov; 24(11):729-736. PubMed ID: 34375142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of Driver's Stress using Multimodal Biosignals and Regularized Deep Kernel Learning.
    Roha VS; Ganapathy N; Spicher N; Saha S; Deserno TM
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAEVR: Biosignals-Driven Context-Aware Empathy in Virtual Reality.
    Gupta K; Zhang Y; Gunasekaran TS; Krishna N; Pai YS; Billinghurst M
    IEEE Trans Vis Comput Graph; 2024 May; 30(5):2671-2681. PubMed ID: 38437090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relaxation with Immersive Natural Scenes Presented Using Virtual Reality.
    Anderson AP; Mayer MD; Fellows AM; Cowan DR; Hegel MT; Buckey JC
    Aerosp Med Hum Perform; 2017 Jun; 88(6):520-526. PubMed ID: 28539139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using machine-learning approach to distinguish patients with methamphetamine dependence from healthy subjects in a virtual reality environment.
    Ding X; Li Y; Li D; Li L; Liu X
    Brain Behav; 2020 Nov; 10(11):e01814. PubMed ID: 32862513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomic Nervous System Reactivity During Speech Repetition Tasks: Heart Rate Variability and Skin Conductance.
    Mackersie CL; Calderon-Moultrie N
    Ear Hear; 2016; 37 Suppl 1():118S-25S. PubMed ID: 27355761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.