BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

519 related articles for article (PubMed ID: 29064502)

  • 1. Phase behaviour of disordered proteins underlying low density and high permeability of liquid organelles.
    Wei MT; Elbaum-Garfinkle S; Holehouse AS; Chen CC; Feric M; Arnold CB; Priestley RD; Pappu RV; Brangwynne CP
    Nat Chem; 2017 Nov; 9(11):1118-1125. PubMed ID: 29064502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable protein phase separation and modular recruitment to form responsive membraneless organelles.
    Schuster BS; Reed EH; Parthasarathy R; Jahnke CN; Caldwell RM; Bermudez JG; Ramage H; Good MC; Hammer DA
    Nat Commun; 2018 Jul; 9(1):2985. PubMed ID: 30061688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic and sequential characteristics of phase separation and droplet formation for an intrinsically disordered region/protein ensemble.
    Chu WT; Wang J
    PLoS Comput Biol; 2021 Mar; 17(3):e1008672. PubMed ID: 33684117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics.
    Elbaum-Garfinkle S; Kim Y; Szczepaniak K; Chen CC; Eckmann CR; Myong S; Brangwynne CP
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7189-94. PubMed ID: 26015579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods and Strategies to Quantify Phase Separation of Disordered Proteins.
    Ceballos AV; McDonald CJ; Elbaum-Garfinkle S
    Methods Enzymol; 2018; 611():31-50. PubMed ID: 30471691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular principles of recruitment and dynamics of guest proteins in liquid droplets.
    Kamagata K; Iwaki N; Hazra MK; Kanbayashi S; Banerjee T; Chiba R; Sakomoto S; Gaudon V; Castaing B; Takahashi H; Kimura M; Oikawa H; Takahashi S; Levy Y
    Sci Rep; 2021 Sep; 11(1):19323. PubMed ID: 34588591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membraneless organelles: P granules in Caenorhabditis elegans.
    Marnik EA; Updike DL
    Traffic; 2019 Jun; 20(6):373-379. PubMed ID: 30924287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
    Dignon GL; Best RB; Mittal J
    Annu Rev Phys Chem; 2020 Apr; 71():53-75. PubMed ID: 32312191
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsically disordered proteins in crowded milieu: when chaos prevails within the cellular gumbo.
    Fonin AV; Darling AL; Kuznetsova IM; Turoverov KK; Uversky VN
    Cell Mol Life Sci; 2018 Nov; 75(21):3907-3929. PubMed ID: 30066087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying sequence perturbations to an intrinsically disordered protein that determine its phase-separation behavior.
    Schuster BS; Dignon GL; Tang WS; Kelley FM; Ranganath AK; Jahnke CN; Simpkins AG; Regy RM; Hammer DA; Good MC; Mittal J
    Proc Natl Acad Sci U S A; 2020 May; 117(21):11421-11431. PubMed ID: 32393642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells.
    Zhao H; Ibrahimova V; Garanger E; Lecommandoux S
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):11028-11036. PubMed ID: 32207864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase Separation of Intrinsically Disordered Proteins.
    Posey AE; Holehouse AS; Pappu RV
    Methods Enzymol; 2018; 611():1-30. PubMed ID: 30471685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural and hydrodynamic properties of an intrinsically disordered region of a germ cell-specific protein on phase separation.
    Brady JP; Farber PJ; Sekhar A; Lin YH; Huang R; Bah A; Nott TJ; Chan HS; Baldwin AJ; Forman-Kay JD; Kay LE
    Proc Natl Acad Sci U S A; 2017 Sep; 114(39):E8194-E8203. PubMed ID: 28894006
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions between the Intrinsically Disordered Regions of hnRNP-A2 and TDP-43 Accelerate TDP-43's Conformational Transition.
    Chiang WC; Lee MH; Chen TC; Huang JR
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32824743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation and Maturation of Phase-Separated Liquid Droplets by RNA-Binding Proteins.
    Lin Y; Protter DS; Rosen MK; Parker R
    Mol Cell; 2015 Oct; 60(2):208-19. PubMed ID: 26412307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles.
    Uversky VN
    Adv Colloid Interface Sci; 2017 Jan; 239():97-114. PubMed ID: 27291647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative roles of charge,
    Das S; Lin YH; Vernon RM; Forman-Kay JD; Chan HS
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):28795-28805. PubMed ID: 33139563
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How Do Flaviviruses Hijack Host Cell Functions by Phase Separation?
    Saito A; Shofa M; Ode H; Yumiya M; Hirano J; Okamoto T; Yoshimura SH
    Viruses; 2021 Jul; 13(8):. PubMed ID: 34452345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Details of Protein Condensates Probed by Microsecond Long Atomistic Simulations.
    Zheng W; Dignon GL; Jovic N; Xu X; Regy RM; Fawzi NL; Kim YC; Best RB; Mittal J
    J Phys Chem B; 2020 Dec; 124(51):11671-11679. PubMed ID: 33302617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.