These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

516 related articles for article (PubMed ID: 29064502)

  • 21. Convergence of Artificial Protein Polymers and Intrinsically Disordered Proteins.
    Dzuricky M; Roberts S; Chilkoti A
    Biochemistry; 2018 May; 57(17):2405-2414. PubMed ID: 29683665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipid droplets as substrates for protein phase separation.
    Kamatar A; Bravo JPK; Yuan F; Wang L; Lafer EM; Taylor DW; Stachowiak JC; Parekh SH
    Biophys J; 2024 Jun; 123(11):1494-1507. PubMed ID: 38462838
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Charge Segregation in the Intrinsically Disordered Region Governs VRN1 and DNA Liquid-like Phase Separation Robustness.
    Wang Y; Zhou H; Sun X; Huang Q; Li S; Liu Z; Zhang C; Lai L
    J Mol Biol; 2021 Nov; 433(22):167269. PubMed ID: 34571015
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein Condensate Formation via Controlled Multimerization of Intrinsically Disordered Sequences.
    Garabedian MV; Su Z; Dabdoub J; Tong M; Deiters A; Hammer DA; Good MC
    Biochemistry; 2022 Nov; 61(22):2470-2481. PubMed ID: 35918061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single-droplet surface-enhanced Raman scattering decodes the molecular determinants of liquid-liquid phase separation.
    Avni A; Joshi A; Walimbe A; Pattanashetty SG; Mukhopadhyay S
    Nat Commun; 2022 Jul; 13(1):4378. PubMed ID: 35902591
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrostatic interactions in molecular recognition of intrinsically disordered proteins.
    Yang J; Zeng Y; Liu Y; Gao M; Liu S; Su Z; Huang Y
    J Biomol Struct Dyn; 2020 Oct; 38(16):4883-4894. PubMed ID: 31709918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interplay between intrinsically disordered proteins inside membraneless protein liquid droplets.
    Jo Y; Jung Y
    Chem Sci; 2019 Dec; 11(5):1269-1275. PubMed ID: 34123251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intrinsically Disordered Proteome of Human Membrane-Less Organelles.
    Darling AL; Liu Y; Oldfield CJ; Uversky VN
    Proteomics; 2018 Mar; 18(5-6):e1700193. PubMed ID: 29068531
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression.
    Peng Q; Wang L; Qin Z; Wang J; Zheng X; Wei L; Zhang X; Zhang X; Liu C; Li Z; Wu Y; Li G; Yan Q; Ma J
    J Virol; 2020 Mar; 94(7):. PubMed ID: 31941785
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stochasticity of Biological Soft Matter: Emerging Concepts in Intrinsically Disordered Proteins and Biological Phase Separation.
    Turoverov KK; Kuznetsova IM; Fonin AV; Darling AL; Zaslavsky BY; Uversky VN
    Trends Biochem Sci; 2019 Aug; 44(8):716-728. PubMed ID: 31023505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sequence effects on internal structure of droplets of associative polymers.
    Singh K; Rabin Y
    Biophys J; 2021 Apr; 120(7):1210-1218. PubMed ID: 32937111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Do sequence neighbours of intrinsically disordered regions promote structural flexibility in intrinsically disordered proteins?
    Basu S; Bahadur RP
    J Struct Biol; 2020 Feb; 209(2):107428. PubMed ID: 31756456
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determinants that enable disordered protein assembly into discrete condensed phases.
    Welles RM; Sojitra KA; Garabedian MV; Xia B; Wang W; Guan M; Regy RM; Gallagher ER; Hammer DA; Mittal J; Good MC
    Nat Chem; 2024 Jul; 16(7):1062-1072. PubMed ID: 38316988
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscopic Dynamics Dictate the Phase Separation Behavior of Intrinsically Disordered Proteins.
    Laaß K; Quiroz FG; Hunold J; Roberts S; Chilkoti A; Hinderberger D
    Biomacromolecules; 2021 Feb; 22(2):1015-1025. PubMed ID: 33403854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using a sequence-specific coarse-grained model for studying protein liquid-liquid phase separation.
    Mammen Regy R; Zheng W; Mittal J
    Methods Enzymol; 2021; 646():1-17. PubMed ID: 33453922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In Vitro Transition Temperature Measurement of Phase-Separating Proteins by Microscopy.
    Holland J; Crabtree MD; Nott TJ
    Methods Mol Biol; 2020; 2141():703-714. PubMed ID: 32696385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Liquid-Liquid Phase Separation of Patchy Particles Illuminates Diverse Effects of Regulatory Components on Protein Droplet Formation.
    Nguemaha V; Zhou HX
    Sci Rep; 2018 Apr; 8(1):6728. PubMed ID: 29712961
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.
    Lin YH; Forman-Kay JD; Chan HS
    Biochemistry; 2018 May; 57(17):2499-2508. PubMed ID: 29509422
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liquid-Liquid Phase Separation Is Driven by Large-Scale Conformational Unwinding and Fluctuations of Intrinsically Disordered Protein Molecules.
    Majumdar A; Dogra P; Maity S; Mukhopadhyay S
    J Phys Chem Lett; 2019 Jul; 10(14):3929-3936. PubMed ID: 31260322
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Formation of biological condensates via phase separation: Characteristics, analytical methods, and physiological implications.
    Feng Z; Chen X; Wu X; Zhang M
    J Biol Chem; 2019 Oct; 294(40):14823-14835. PubMed ID: 31444270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.