These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29064629)

  • 21. Impact of dialyzer membrane flux on metal clearance in hemodialysis patients.
    Mortada WI; Nabieh KA; Donia AF; Ismail AM; Kenawy IM
    J Trace Elem Med Biol; 2016 Jul; 36():52-6. PubMed ID: 27259352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific adsorption of some complement activation proteins to polysulfone dialysis membranes during hemodialysis.
    Mares J; Thongboonkerd V; Tuma Z; Moravec J; Matejovic M
    Kidney Int; 2009 Aug; 76(4):404-13. PubMed ID: 19421191
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Flux Dialysis: Clinical, Biochemical, and Proteomic Comparison with Low-Flux Dialysis and On-Line Hemodiafiltration.
    Donadio C; Kanaki A; Sami N; Tognotti D
    Blood Purif; 2017; 44(2):129-139. PubMed ID: 28571019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of membrane composition and structure on solute removal and biocompatibility in hemodialysis.
    Clark WR; Hamburger RJ; Lysaght MJ
    Kidney Int; 1999 Dec; 56(6):2005-15. PubMed ID: 10594776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Factors which influence phosphorus removal in hemodialysis].
    Gallar P; Ortiz M; Ortega O; Rodríguez I; Seijas V; Carreño A; Oliet A; Vigil A
    Nefrologia; 2007; 27(1):46-52. PubMed ID: 17402879
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption dialysis: from physical principles to clinical applications.
    Aucella F; Gesuete A; Vigilante M; Prencipe M
    Blood Purif; 2013; 35 Suppl 2():42-7. PubMed ID: 23676835
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of insulin adsorption behavior of dialyzer membranes used in hemodialysis.
    Abe M; Okada K; Ikeda K; Matsumoto S; Soma M; Matsumoto K
    Artif Organs; 2011 Apr; 35(4):398-403. PubMed ID: 21314833
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Blood-membrane interactions during dialysis.
    Huang Z; Gao D; Letteri JJ; Clark WR
    Semin Dial; 2009; 22(6):623-8. PubMed ID: 20017832
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pharmacokinetics of Certoparin During In Vitro and In Vivo Dialysis.
    Krieter DH; Fink S; Dorsch O; Harenberg J; Melzer N; Wanner C; Lemke HD
    Artif Organs; 2015 Nov; 39(11):951-9. PubMed ID: 25900127
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multidimensional Classification of Dialysis Membranes.
    Ronco C; Neri M; Lorenzin A; Garzotto F; Clark WR
    Contrib Nephrol; 2017; 191():115-126. PubMed ID: 28910795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteomics in extracorporeal blood purification and peritoneal dialysis.
    Thongboonkerd V
    J Proteomics; 2010 Jan; 73(3):521-6. PubMed ID: 19527805
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Species and characteristics of protein adsorption on reused hemodialysis membranes].
    Yang Y; Xu X; Wang X; Zhu G
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Feb; 26(1):67-71. PubMed ID: 19334557
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrophilic monomers suppress the adsorption of plasma protein onto a poly(vinylidene fluoride) membrane.
    Takahashi A; Hisatomi H
    Mol Med Rep; 2009; 2(5):749-52. PubMed ID: 21475896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Clinical characterization of Dicea a new cellulose membrane for haemodialysis.
    Hoenich NA; Woffindin C; Cox PJ; Goldfinch M; Roberts SJ
    Clin Nephrol; 1997 Oct; 48(4):253-9. PubMed ID: 9352161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Clinical evaluation of four different high-flux hemodialyzers under conventional conditions in vivo.
    Sombolos K; Tsitamidou Z; Kyriazis G; Karagianni A; Kantaropoulou M; Progia E
    Am J Nephrol; 1997; 17(5):406-12. PubMed ID: 9382156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of blood contact on the transport properties of hemodialysis membranes: a two-layer membrane model.
    Langsdorf LJ; Zydney AL
    Blood Purif; 1994; 12(6):292-307. PubMed ID: 7532418
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of subjective and hemodynamic tolerance of different high- and low-flux dialysis membranes in patients undergoing chronic intermittent hemodialysis: a randomized controlled trial.
    Bianchi G; Salvadé V; Lucchini B; Schätti-Stählin S; Salvadé I; Burnier M; Gabutti L
    Hemodial Int; 2014 Oct; 18(4):825-34. PubMed ID: 24865782
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Pushing the boundaries of hemodialysis: innovations in membranes and sorbents.
    Vega-Vega O; Ronco C; Martínez-Rueda AJ
    Rev Invest Clin; 2023 Dec; 75(6):274-288. PubMed ID: 37913784
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Proteomic profiling of blood-dialyzer interactome reveals involvement of lectin complement pathway in hemodialysis-induced inflammatory response.
    Mares J; Richtrova P; Hricinova A; Tuma Z; Moravec J; Lysak D; Matejovic M
    Proteomics Clin Appl; 2010 Nov; 4(10-11):829-38. PubMed ID: 21137026
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of proteomic tools to study protein adsorption on a biomaterial, titanium grafted with poly(sodium styrene sulfonate).
    Oughlis S; Lessim S; Changotade S; Bollotte F; Poirier F; Helary G; Lataillade JJ; Migonney V; Lutomski D
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Dec; 879(31):3681-7. PubMed ID: 22036657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.