These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
378 related articles for article (PubMed ID: 29064699)
1. mRNA-Sequencing Analysis Reveals Transcriptional Changes in Root of Maize Seedlings Treated with Two Increasing Concentrations of a New Biostimulant. Trevisan S; Manoli A; Ravazzolo L; Franceschi C; Quaggiotti S J Agric Food Chem; 2017 Nov; 65(46):9956-9969. PubMed ID: 29064699 [TBL] [Abstract][Full Text] [Related]
2. Quantitative Proteomics of Maize Roots Treated with a Protein Hydrolysate: A Comparative Study with Transcriptomics Highlights the Molecular Mechanisms Responsive to Biostimulants. Ebinezer LB; Franchin C; Trentin AR; Carletti P; Trevisan S; Agrawal GK; Rakwal R; Quaggiotti S; Arrigoni G; Masi A J Agric Food Chem; 2020 Jul; 68(28):7541-7553. PubMed ID: 32608980 [TBL] [Abstract][Full Text] [Related]
3. Comment on mRNA-Sequencing Analysis Reveals Transcriptional Changes in Root of Maize Seedlings Treated with Two Increasing Concentrations of a New Biostimulant. da Silva RR J Agric Food Chem; 2018 Feb; 66(8):2061-2062. PubMed ID: 29443526 [TBL] [Abstract][Full Text] [Related]
4. Application of a Plant Biostimulant To Improve Maize ( Panfili I; Bartucca ML; Marrollo G; Povero G; Del Buono D J Agric Food Chem; 2019 Nov; 67(44):12164-12171. PubMed ID: 31600067 [TBL] [Abstract][Full Text] [Related]
5. Influence of graphene on the multiple metabolic pathways of Zea mays roots based on transcriptome analysis. Chen Z; Zhao J; Song J; Han S; Du Y; Qiao Y; Liu Z; Qiao J; Li W; Li J; Wang H; Xing B; Pan Q PLoS One; 2021; 16(1):e0244856. PubMed ID: 33395448 [TBL] [Abstract][Full Text] [Related]
6. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey. Trevisan S; Manoli A; Ravazzolo L; Botton A; Pivato M; Masi A; Quaggiotti S J Exp Bot; 2015 Jul; 66(13):3699-715. PubMed ID: 25911739 [TBL] [Abstract][Full Text] [Related]
7. Water-deficit-induced changes in transcription factor expression in maize seedlings. Seeve CM; Cho IJ; Hearne LB; Srivastava GP; Joshi T; Smith DO; Sharp RE; Oliver MJ Plant Cell Environ; 2017 May; 40(5):686-701. PubMed ID: 28039925 [TBL] [Abstract][Full Text] [Related]
8. Phytotoxic cyanamide affects maize (Zea mays) root growth and root tip function: from structure to gene expression. Soltys D; RudziĆska-Langwald A; Kurek W; Szajko K; Sliwinska E; Bogatek R; Gniazdowska A J Plant Physiol; 2014 May; 171(8):565-75. PubMed ID: 24709147 [TBL] [Abstract][Full Text] [Related]
9. Non-syntenic genes drive RTCS-dependent regulation of the embryo transcriptome during formation of seminal root primordia in maize (Zea mays L.). Tai H; Opitz N; Lithio A; Lu X; Nettleton D; Hochholdinger F J Exp Bot; 2017 Jan; 68(3):403-414. PubMed ID: 28204533 [TBL] [Abstract][Full Text] [Related]
10. Transition from a maternal to external nitrogen source in maize seedlings. Sabermanesh K; Holtham LR; George J; Roessner U; Boughton BA; Heuer S; Tester M; Plett DC; Garnett TP J Integr Plant Biol; 2017 Apr; 59(4):261-274. PubMed ID: 28169508 [TBL] [Abstract][Full Text] [Related]
11. Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Menezes-Benavente L; Kernodle SP; Margis-Pinheiro M; Scandalios JG Redox Rep; 2004; 9(1):29-36. PubMed ID: 15035825 [TBL] [Abstract][Full Text] [Related]
12. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage. Hwang SG; Kim KH; Lee BM; Moon JC Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814 [TBL] [Abstract][Full Text] [Related]
13. Cadmium inhibits the induction of high-affinity nitrate uptake in maize (Zea mays L.) roots. Rizzardo C; Tomasi N; Monte R; Varanini Z; Nocito FF; Cesco S; Pinton R Planta; 2012 Dec; 236(6):1701-12. PubMed ID: 22983671 [TBL] [Abstract][Full Text] [Related]
14. NIN-LIKE PROTEIN3.2 inhibits repressor Aux/IAA14 expression and enhances root biomass in maize seedlings under low nitrogen. Wang R; Zhong Y; Han J; Huang L; Wang Y; Shi X; Li M; Zhuang Y; Ren W; Liu X; Cao H; Xin B; Lai J; Chen L; Chen F; Yuan L; Wang Y; Li X Plant Cell; 2024 Oct; 36(10):4388-4403. PubMed ID: 38917216 [TBL] [Abstract][Full Text] [Related]
15. Effect of exogenous ammonium gluconate on growth, ion flux and antioxidant enzymes of maize (Zea Mays L.) seedlings under NaCl stress. Ding F; Wang R; Chen B Plant Biol (Stuttg); 2019 Jul; 21(4):643-651. PubMed ID: 30663821 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Guo J; Li C; Zhang X; Li Y; Zhang D; Shi Y; Song Y; Li Y; Yang D; Wang T Plant Sci; 2020 Mar; 292():110380. PubMed ID: 32005385 [TBL] [Abstract][Full Text] [Related]
17. Root-type-specific plasticity in response to localized high nitrate supply in maize (Zea mays). Yu P; Hochholdinger F; Li C Ann Bot; 2015 Oct; 116(5):751-62. PubMed ID: 26346717 [TBL] [Abstract][Full Text] [Related]
18. Root morphological and proteomic responses to growth restriction in maize plants supplied with sufficient N. Yan H; Li K; Ding H; Liao C; Li X; Yuan L; Li C J Plant Physiol; 2011 Jul; 168(10):1067-75. PubMed ID: 21353328 [TBL] [Abstract][Full Text] [Related]
19. High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize. Wang Y; Xu J; Ge M; Ning L; Hu M; Zhao H BMC Genomics; 2020 May; 21(1):353. PubMed ID: 32393171 [TBL] [Abstract][Full Text] [Related]
20. Integrated Transcriptomic and Metabolomic Analysis Reveals the Molecular Regulatory Mechanism of Flavonoid Biosynthesis in Maize Roots under Lead Stress. Guo Z; Yuan X; Li T; Wang S; Yu Y; Liu C; Duan C Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892238 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]