These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 29064712)

  • 1. Superhydrophobicity from the Inside.
    Simovich T; Ritchie C; Belev G; Cooper DML; Lamb RN
    Langmuir; 2017 Dec; 33(49):13990-13995. PubMed ID: 29064712
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second-Level Microgroove Convexity is Critical for Air Plastron Restoration on Immersed Hierarchical Superhydrophobic Surfaces.
    Han X; Liu J; Wang M; Upmanyu M; Wang H
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52524-52534. PubMed ID: 36373889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superrepellency of underwater hierarchical structures on
    Xiang Y; Huang S; Huang TY; Dong A; Cao D; Li H; Xue Y; Lv P; Duan H
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2282-2287. PubMed ID: 31964812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Driven Gas Spreading on Mesh Surfaces for Regeneration of Underwater Superhydrophobicity.
    Wang J; Liu Y
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39034615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-Dimensional Analysis of Air-Water Interface on Superhydrophobic Grooves under Fluctuating Water Pressure.
    Piao L; Park H
    Langmuir; 2015 Jul; 31(29):8022-32. PubMed ID: 26135133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Air-water interface of submerged superhydrophobic surfaces imaged by atomic force microscopy.
    Moosmann M; Schimmel T; Barthlott W; Mail M
    Beilstein J Nanotechnol; 2017; 8():1671-1679. PubMed ID: 28875104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasma-Textured Teflon: Repulsion in Air of Water Droplets and Drag Reduction Underwater.
    Di Mundo R; Bottiglione F; Notarnicola M; Palumbo F; Pascazio G
    Biomimetics (Basel); 2017 Jan; 2(1):. PubMed ID: 31105164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastron Regeneration on Submerged Superhydrophobic Surfaces Using In Situ Gas Generation by Chemical Reaction.
    Panchanathan D; Rajappan A; Varanasi KK; McKinley GH
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33684-33692. PubMed ID: 30184437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air Trapping Mechanism in Artificial Salvinia-Like Micro-Hairs Fabricated via Direct Laser Lithography.
    Tricinci O; Terencio T; Pugno NM; Greco F; Mazzolai B; Mattoli V
    Micromachines (Basel); 2017 Dec; 8(12):. PubMed ID: 30400556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces.
    Xue Y; Chu S; Lv P; Duan H
    Langmuir; 2012 Jun; 28(25):9440-50. PubMed ID: 22642584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic air layer on textured superhydrophobic surfaces.
    Vakarelski IU; Chan DY; Marston JO; Thoroddsen ST
    Langmuir; 2013 Sep; 29(35):11074-81. PubMed ID: 23919719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adhesion of Microdroplets on Water-Repellent Surfaces toward the Prevention of Surface Fouling and Pathogen Spreading by Respiratory Droplets.
    Jiang J; Zhang H; He W; Li T; Li H; Liu P; Liu M; Wang Z; Wang Z; Yao X
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):6599-6608. PubMed ID: 28121417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filamentary superhydrophobic Teflon surfaces: Moderate apparent contact angle but superior air-retaining properties.
    Di Mundo R; Bottiglione F; Palumbo F; Notarnicola M; Carbone G
    J Colloid Interface Sci; 2016 Nov; 482():175-182. PubMed ID: 27501041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a superhydrophobic surface with underwater air-retaining properties by electrostatic flocking.
    Zheng Y; Zhou X; Xing Z; Tu T
    RSC Adv; 2018 Mar; 8(20):10719-10726. PubMed ID: 35541509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wetting and Dewetting Transitions on Submerged Superhydrophobic Surfaces with Hierarchical Structures.
    Wu H; Yang Z; Cao B; Zhang Z; Zhu K; Wu B; Jiang S; Chai G
    Langmuir; 2017 Jan; 33(1):407-416. PubMed ID: 27989127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability.
    Lee BJ; Zhang Z; Baek S; Kim S; Kim D; Yong K
    Sci Rep; 2016 Apr; 6():24653. PubMed ID: 27095674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion.
    Bhushan B; Jung YC; Koch K
    Philos Trans A Math Phys Eng Sci; 2009 May; 367(1894):1631-72. PubMed ID: 19376764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metastable underwater superhydrophobicity.
    Poetes R; Holtzmann K; Franze K; Steiner U
    Phys Rev Lett; 2010 Oct; 105(16):166104. PubMed ID: 21230986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.