These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 29064712)

  • 21. Effect of Flow and Particle-Plastron Collision on the Longevity of Superhydrophobicity.
    Hokmabad BV; Ghaemi S
    Sci Rep; 2017 Jan; 7():41448. PubMed ID: 28128296
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recoverable underwater superhydrophobicity from a fully wetted state via dynamic air spreading.
    Zhao Y; Xu Z; Gong L; Yang S; Zeng H; He C; Ge D; Yang L
    iScience; 2021 Dec; 24(12):103427. PubMed ID: 34877492
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes.
    Bhushan B; Jung YC; Niemietz A; Koch K
    Langmuir; 2009 Feb; 25(3):1659-66. PubMed ID: 19132938
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Layers of air in the water beneath the floating fern Salvinia are exposed to fluctuations in pressure.
    Mayser MJ; Barthlott W
    Integr Comp Biol; 2014 Dec; 54(6):1001-7. PubMed ID: 24925548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. General formulations for predicting longevity of submerged superhydrophobic surfaces composed of pores or posts.
    Hemeda AA; Tafreshi HV
    Langmuir; 2014 Sep; 30(34):10317-27. PubMed ID: 25109908
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Visualisation by high resolution synchrotron X-ray phase contrast micro-tomography of gas films on submerged superhydrophobic leaves.
    Lauridsen T; Glavina K; Colmer TD; Winkel A; Irvine S; Lefmann K; Feidenhans'l R; Pedersen O
    J Struct Biol; 2014 Oct; 188(1):61-70. PubMed ID: 25175398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metastable states and wetting transition of submerged superhydrophobic structures.
    Lv P; Xue Y; Shi Y; Lin H; Duan H
    Phys Rev Lett; 2014 May; 112(19):196101. PubMed ID: 24877948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Measuring air layer volumes retained by submerged floating-ferns Salvinia and biomimetic superhydrophobic surfaces.
    Mayser MJ; Bohn HF; Reker M; Barthlott W
    Beilstein J Nanotechnol; 2014; 5():812-821. PubMed ID: 24991518
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wettability of natural superhydrophobic surfaces.
    Webb HK; Crawford RJ; Ivanova EP
    Adv Colloid Interface Sci; 2014 Aug; 210():58-64. PubMed ID: 24556235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Long-Term Underwater Hydrophobicity: Exploring Topographic and Chemical Requirements.
    Martínez-Gómez A; López S; García T; de Francisco R; Tiemblo P; García N
    ACS Omega; 2017 Dec; 2(12):8928-8939. PubMed ID: 31457420
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique.
    Sahoo BN; Balasubramanian K
    J Colloid Interface Sci; 2014 Dec; 436():111-21. PubMed ID: 25268814
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.
    Shi C; Cui X; Zhang X; Tchoukov P; Liu Q; Encinas N; Paven M; Geyer F; Vollmer D; Xu Z; Butt HJ; Zeng H
    Langmuir; 2015 Jul; 31(26):7317-27. PubMed ID: 26065326
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Is Superhydrophobicity Equal to Underwater Superaerophilicity: Regulating the Gas Behavior on Superaerophilic Surface via Hydrophilic Defects.
    Cao M; Li Z; Ma H; Geng H; Yu C; Jiang L
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20995-21000. PubMed ID: 29845857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fabrication of Salvinia-inspired surfaces for hydrodynamic drag reduction by capillary-force-induced clustering.
    Kim M; Yoo S; Jeong HE; Kwak MK
    Nat Commun; 2022 Sep; 13(1):5181. PubMed ID: 36056031
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method.
    Ensikat HJ; Mayser M; Barthlott W
    Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography.
    Tricinci O; Terencio T; Mazzolai B; Pugno NM; Greco F; Mattoli V
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25560-7. PubMed ID: 26558410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes.
    Li J; Jing Z; Zha F; Yang Y; Wang Q; Lei Z
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8868-77. PubMed ID: 24807195
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A surface exhibiting superoleophobicity both in air and in seawater.
    Zhang G; Zhang X; Huang Y; Su Z
    ACS Appl Mater Interfaces; 2013 Jul; 5(13):6400-3. PubMed ID: 23758754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Air retaining grids-a novel technology to maintain stable air layers under water for drag reduction.
    Mail M; Moosmann M; Häger P; Barthlott W
    Philos Trans A Math Phys Eng Sci; 2019 Jul; 377(2150):20190126. PubMed ID: 31177962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.