These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29064784)

  • 1. Balancing New against Old Information: The Role of Puzzlement Surprise in Learning.
    Faraji M; Preuschoff K; Gerstner W
    Neural Comput; 2018 Jan; 30(1):34-83. PubMed ID: 29064784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novelty is not surprise: Human exploratory and adaptive behavior in sequential decision-making.
    Xu HA; Modirshanechi A; Lehmann MP; Gerstner W; Herzog MH
    PLoS Comput Biol; 2021 Jun; 17(6):e1009070. PubMed ID: 34081705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning From Surprise: Harnessing a Metacognitive Surprise Signal to Build and Adapt Belief Networks.
    Munnich E; Ranney MA
    Top Cogn Sci; 2019 Jan; 11(1):164-177. PubMed ID: 30549202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning in Volatile Environments With the Bayes Factor Surprise.
    Liakoni V; Modirshanechi A; Gerstner W; Brea J
    Neural Comput; 2021 Feb; 33(2):269-340. PubMed ID: 33400898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence, information, and surprise.
    Palm G
    Biol Cybern; 1981; 42(1):57-68. PubMed ID: 7326283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Control Theoretic Model of Adaptive Learning in Dynamic Environments.
    Ritz H; Nassar MR; Frank MJ; Shenhav A
    J Cogn Neurosci; 2018 Oct; 30(10):1405-1421. PubMed ID: 29877769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive learning via selectionism and Bayesianism, Part I: connection between the two.
    Zhang J
    Neural Netw; 2009 Apr; 22(3):220-8. PubMed ID: 19386469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for surprise minimization over value maximization in choice behavior.
    Schwartenbeck P; FitzGerald TH; Mathys C; Dolan R; Kronbichler M; Friston K
    Sci Rep; 2015 Nov; 5():16575. PubMed ID: 26564686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Violations of Core Knowledge Shape Early Learning.
    Stahl AE; Feigenson L
    Top Cogn Sci; 2019 Jan; 11(1):136-153. PubMed ID: 30369059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experience-driven recalibration of learning from surprising events.
    Bakst L; McGuire JT
    Cognition; 2023 Mar; 232():105343. PubMed ID: 36481590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Surprise in Learning: Different Surprising Outcomes Affect Memorability Differentially.
    Foster MI; Keane MT
    Top Cogn Sci; 2019 Jan; 11(1):75-87. PubMed ID: 30375159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Information Theoretic Characterization of Uncertainty Distinguishes Surprise From Accuracy Signals in the Brain.
    Loued-Khenissi L; Preuschoff K
    Front Artif Intell; 2020; 3():5. PubMed ID: 33733125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Contrast-Based Computational Model of Surprise and Its Applications.
    Macedo L; Cardoso A
    Top Cogn Sci; 2019 Jan; 11(1):88-102. PubMed ID: 29152886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Of bits and wows: A Bayesian theory of surprise with applications to attention.
    Baldi P; Itti L
    Neural Netw; 2010 Jun; 23(5):649-66. PubMed ID: 20080025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A spiking neural network model of an actor-critic learning agent.
    Potjans W; Morrison A; Diesmann M
    Neural Comput; 2009 Feb; 21(2):301-39. PubMed ID: 19196231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prior probabilities modulate cortical surprise responses: A study of event-related potentials.
    Seer C; Lange F; Boos M; Dengler R; Kopp B
    Brain Cogn; 2016 Jul; 106():78-89. PubMed ID: 27266394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Code-specific learning rules improve action selection by populations of spiking neurons.
    Friedrich J; Urbanczik R; Senn W
    Int J Neural Syst; 2014 Aug; 24(5):1450002. PubMed ID: 24875790
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal logic viewed from observation space: theory and a case study.
    Hatakeyama M; Tsuda I
    Biosystems; 2007; 90(1):273-86. PubMed ID: 17367918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionally dissociable influences on learning rate in a dynamic environment.
    McGuire JT; Nassar MR; Gold JI; Kable JW
    Neuron; 2014 Nov; 84(4):870-81. PubMed ID: 25459409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An embodied biologically constrained model of foraging: from classical and operant conditioning to adaptive real-world behavior in DAC-X.
    Maffei G; Santos-Pata D; Marcos E; Sánchez-Fibla M; Verschure PF
    Neural Netw; 2015 Dec; 72():88-108. PubMed ID: 26585942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.