These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 29064823)
1. Graphene-vertically aligned carbon nanotube hybrid on PDMS as stretchable electrodes. Ding J; Fu S; Zhang R; Boon E; Lee W; Fisher FT; Yang EH Nanotechnology; 2017 Nov; 28(46):465302. PubMed ID: 29064823 [TBL] [Abstract][Full Text] [Related]
2. A stretchable and bendable all-solid-state pseudocapacitor with dodecylbenzenesulfonate-doped polypyrrole-coated vertically aligned carbon nanotubes partially embedded in PDMS. Zhang R; Yan K; Palumbo A; Xu J; Fu S; Yang EH Nanotechnology; 2019 Mar; 30(9):095401. PubMed ID: 30523902 [TBL] [Abstract][Full Text] [Related]
3. Elastomer-infiltrated vertically aligned carbon nanotube film-based wavy-configured stretchable conductors. Shin UH; Jeong DW; Kim SH; Lee HW; Kim JM ACS Appl Mater Interfaces; 2014 Aug; 6(15):12909-14. PubMed ID: 25006992 [TBL] [Abstract][Full Text] [Related]
4. Thermally Stable and Electrically Conductive, Vertically Aligned Carbon Nanotube/Silicon Infiltrated Composite Structures for High-Temperature Electrodes. Zou QM; Deng LM; Li DW; Zhou YS; Golgir HR; Keramatnejad K; Fan LS; Jiang L; Silvain JF; Lu YF ACS Appl Mater Interfaces; 2017 Oct; 9(42):37340-37349. PubMed ID: 28976178 [TBL] [Abstract][Full Text] [Related]
5. Vertically aligned carbon nanotube electrodes directly grown on a glassy carbon electrode. Park S; Park DW; Yang CS; Kim KR; Kwak JH; So HM; Ahn CW; Kim BS; Chang H; Lee JO ACS Nano; 2011 Sep; 5(9):7061-8. PubMed ID: 21838325 [TBL] [Abstract][Full Text] [Related]
6. Ultrasensitive Wearable Strain Sensors based on a VACNT/PDMS Thin Film for a Wide Range of Human Motion Monitoring. Paul SJ; Elizabeth I; Gupta BK ACS Appl Mater Interfaces; 2021 Feb; 13(7):8871-8879. PubMed ID: 33588524 [TBL] [Abstract][Full Text] [Related]
7. Effect of vertically aligned carbon nanotube density on the water flux and salt rejection in desalination membranes. Trivedi S; Alameh K Springerplus; 2016; 5(1):1158. PubMed ID: 27504256 [TBL] [Abstract][Full Text] [Related]
8. Compressive Strength Enhancement of Vertically Aligned Carbon Nanotube Forests by Constraint of Graphene Sheets. Su CC; Chen TX; Chang SH Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772567 [TBL] [Abstract][Full Text] [Related]
9. Wafer-scale transfer of vertically aligned carbon nanotube arrays. Wang M; Li T; Yao Y; Lu H; Li Q; Chen M; Li Q J Am Chem Soc; 2014 Dec; 136(52):18156-62. PubMed ID: 25490088 [TBL] [Abstract][Full Text] [Related]
10. A metallization and bonding approach for high performance carbon nanotube thermal interface materials. Cross R; Cola BA; Fisher T; Xu X; Gall K; Graham S Nanotechnology; 2010 Nov; 21(44):445705. PubMed ID: 20935353 [TBL] [Abstract][Full Text] [Related]
11. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Park S; Vosguerichian M; Bao Z Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727 [TBL] [Abstract][Full Text] [Related]
12. Highly Flexible Graphene Derivative Hybrid Film: An Outstanding Nonflammable Thermally Conductive yet Electrically Insulating Material for Efficient Thermal Management. Vu MC; Kim IH; Choi WK; Lim CS; Islam MA; Kim SR ACS Appl Mater Interfaces; 2020 Jun; 12(23):26413-26423. PubMed ID: 32469197 [TBL] [Abstract][Full Text] [Related]
13. Thermocompression bonding of vertically aligned carbon nanotube turfs to metalized substrates. Johnson RD; Bahr DF; Richards CD; Richards RF; McClain D; Green J; Jiao J Nanotechnology; 2009 Feb; 20(6):065703. PubMed ID: 19417397 [TBL] [Abstract][Full Text] [Related]
14. Electrically Conductive Networks from Hybrids of Carbon Nanotubes and Graphene Created by Laser Radiation. Gerasimenko AY; Kuksin AV; Shaman YP; Kitsyuk EP; Fedorova YO; Sysa AV; Pavlov AA; Glukhova OE Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443706 [TBL] [Abstract][Full Text] [Related]
15. Highly Stretchable, Directionally Oriented Carbon Nanotube/PDMS Conductive Films with Enhanced Sensitivity as Wearable Strain Sensors. Tas MO; Baker MA; Masteghin MG; Bentz J; Boxshall K; Stolojan V ACS Appl Mater Interfaces; 2019 Oct; 11(43):39560-39573. PubMed ID: 31552734 [TBL] [Abstract][Full Text] [Related]
16. Highly Sensitive and Stretchable Strain Sensor Based on a Synergistic Hybrid Conductive Network. Liu X; Liang X; Lin Z; Lei Z; Xiong Y; Hu Y; Zhu P; Sun R; Wong CP ACS Appl Mater Interfaces; 2020 Sep; 12(37):42420-42429. PubMed ID: 32833419 [TBL] [Abstract][Full Text] [Related]
17. Stretchable and transparent electrodes using hybrid structures of graphene-metal nanotrough networks with high performances and ultimate uniformity. An BW; Hyun BG; Kim SY; Kim M; Lee MS; Lee K; Koo JB; Chu HY; Bae BS; Park JU Nano Lett; 2014 Nov; 14(11):6322-8. PubMed ID: 25299634 [TBL] [Abstract][Full Text] [Related]
18. A Comparative Study of Compressible and Conductive Vertically Aligned Carbon Nanotube Forest in Different Polymer Matrixes for High-Performance Piezoresistive Force Sensors. Paul SJ; Sharma I; Elizabeth I; Gahtori B; M MR; Titus SS; Chandra P; Gupta BK ACS Appl Mater Interfaces; 2020 Apr; 12(14):16946-16958. PubMed ID: 32196304 [TBL] [Abstract][Full Text] [Related]
19. Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers. Oh JY; Jun GH; Jin S; Ryu HJ; Hong SH ACS Appl Mater Interfaces; 2016 Feb; 8(5):3319-25. PubMed ID: 26784473 [TBL] [Abstract][Full Text] [Related]
20. Inkjet-Deposited Single-Wall Carbon Nanotube Micropatterns on Stretchable PDMS-Ag Substrate-Electrode Structures for Piezoresistive Strain Sensing. Ervasti H; Järvinen T; Pitkänen O; Bozó É; Hiitola-Keinänen J; Huttunen OH; Hiltunen J; Kordas K ACS Appl Mater Interfaces; 2021 Jun; 13(23):27284-27294. PubMed ID: 34075741 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]