These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 29065262)
21. Identification and characterization of novel protein-derived arginine-rich cell-penetrating peptides. Gautam A; Sharma M; Vir P; Chaudhary K; Kapoor P; Kumar R; Nath SK; Raghava GP Eur J Pharm Biopharm; 2015 Jan; 89():93-106. PubMed ID: 25459448 [TBL] [Abstract][Full Text] [Related]
22. Trileucine residues in a ligand-CPP-based siRNA delivery platform improve endosomal escape of siRNA. Ullah I; Chung K; Beloor J; Kim J; Cho M; Kim N; Lee KY; Kumar P; Lee SK J Drug Target; 2017 Apr; 25(4):320-329. PubMed ID: 27820977 [TBL] [Abstract][Full Text] [Related]
23. Engineering of a tumor cell-specific, cytosol-penetrating antibody with high endosomal escape efficacy. Kim JS; Park JY; Shin SM; Park SW; Jun SY; Hong JS; Choi DK; Kim YS Biochem Biophys Res Commun; 2018 Sep; 503(4):2510-2516. PubMed ID: 30208519 [TBL] [Abstract][Full Text] [Related]
24. Protein transduction in human cells is enhanced by cell-penetrating peptides fused with an endosomolytic HA2 sequence. Liou JS; Liu BR; Martin AL; Huang YW; Chiang HJ; Lee HJ Peptides; 2012 Oct; 37(2):273-84. PubMed ID: 22898256 [TBL] [Abstract][Full Text] [Related]
25. Selecting improved peptidyl motifs for cytosolic delivery of disparate protein and nanoparticle materials. Boeneman K; Delehanty JB; Blanco-Canosa JB; Susumu K; Stewart MH; Oh E; Huston AL; Dawson G; Ingale S; Walters R; Domowicz M; Deschamps JR; Algar WR; Dimaggio S; Manono J; Spillmann CM; Thompson D; Jennings TL; Dawson PE; Medintz IL ACS Nano; 2013 May; 7(5):3778-96. PubMed ID: 23710591 [TBL] [Abstract][Full Text] [Related]
26. Early endosomal escape of a cyclic cell-penetrating peptide allows effective cytosolic cargo delivery. Qian Z; LaRochelle JR; Jiang B; Lian W; Hard RL; Selner NG; Luechapanichkul R; Barrios AM; Pei D Biochemistry; 2014 Jun; 53(24):4034-46. PubMed ID: 24896852 [TBL] [Abstract][Full Text] [Related]
27. Photoinduced Endosomal Escape Mechanism: A View from Photochemical Internalization Mediated by CPP-Photosensitizer Conjugates. Soe TH; Watanabe K; Ohtsuki T Molecules; 2020 Dec; 26(1):. PubMed ID: 33374732 [TBL] [Abstract][Full Text] [Related]
28. Elucidating the Impact of Payload Conjugation on the Cell-Penetrating Efficiency of the Endosomal Escape Peptide dfTAT: Implications for Future Designs for CPP-Based Delivery Systems. Diaz J; Pietsch M; Davila M; Jaimes G; Hudson A; Pellois JP Bioconjug Chem; 2023 Oct; 34(10):1861-1872. PubMed ID: 37774419 [TBL] [Abstract][Full Text] [Related]
29. Conjugation of Oligo-His Peptides to Magnetic γ-Fe Le Jeune M; Secret E; Trichet M; Michel A; Ravault D; Illien F; Siaugue JM; Sagan S; Burlina F; Ménager C ACS Appl Mater Interfaces; 2022 Apr; 14(13):15021-15034. PubMed ID: 35319860 [TBL] [Abstract][Full Text] [Related]
30. A quantitative comparison of cytosolic delivery via different protein uptake systems. Verdurmen WPR; Mazlami M; Plückthun A Sci Rep; 2017 Oct; 7(1):13194. PubMed ID: 29038564 [TBL] [Abstract][Full Text] [Related]
31. Novel cell penetrating peptides with multiple motifs composed of RGD and its analogs. Mokhtarieh AA; Kim S; Lee Y; Chung BH; Lee MK Biochem Biophys Res Commun; 2013 Mar; 432(2):359-64. PubMed ID: 23384441 [TBL] [Abstract][Full Text] [Related]
32. Optimizing Charge Switching in Membrane Lytic Peptides for Endosomal Release of Biomacromolecules. Sakamoto K; Akishiba M; Iwata T; Murata K; Mizuno S; Kawano K; Imanishi M; Sugiyama F; Futaki S Angew Chem Int Ed Engl; 2020 Nov; 59(45):19990-19998. PubMed ID: 32557993 [TBL] [Abstract][Full Text] [Related]
33. The influence of net charge and charge distribution on cellular uptake and cytosolic localization of arginine-rich peptides. Fei L; Ren L; Zaro JL; Shen WC J Drug Target; 2011 Sep; 19(8):675-80. PubMed ID: 21142649 [TBL] [Abstract][Full Text] [Related]
34. Oligoarginine-Bearing Tandem Repeat Penetration-Accelerating Sequence Delivers Protein to Cytosol via Caveolae-Mediated Endocytosis. Okuda A; Tahara S; Hirose H; Takeuchi T; Nakase I; Ono A; Takehashi M; Tanaka S; Futaki S Biomacromolecules; 2019 May; 20(5):1849-1859. PubMed ID: 30893557 [TBL] [Abstract][Full Text] [Related]
35. Discovery of a Cyclic Cell-Penetrating Peptide with Improved Endosomal Escape and Cytosolic Delivery Efficiency. Buyanova M; Sahni A; Yang R; Sarkar A; Salim H; Pei D Mol Pharm; 2022 May; 19(5):1378-1388. PubMed ID: 35405068 [TBL] [Abstract][Full Text] [Related]
36. Assessing the Cellular Uptake, Endosomal Escape, and Cytosolic Entry Efficiencies of Cyclic Peptides. Salim H; Pei D Methods Mol Biol; 2022; 2371():301-316. PubMed ID: 34596855 [TBL] [Abstract][Full Text] [Related]
37. Hydrophobicity is a key determinant in the activity of arginine-rich cell penetrating peptides. Allen J; Pellois JP Sci Rep; 2022 Sep; 12(1):15981. PubMed ID: 36156072 [TBL] [Abstract][Full Text] [Related]
39. Arginine-rich cell penetrating peptides: from endosomal uptake to nuclear delivery. Melikov K; Chernomordik LV Cell Mol Life Sci; 2005 Dec; 62(23):2739-49. PubMed ID: 16231085 [TBL] [Abstract][Full Text] [Related]
40. Reversible activation of a cell-penetrating peptide in a membrane environment. Schach DK; Rock W; Franz J; Bonn M; Parekh SH; Weidner T J Am Chem Soc; 2015 Sep; 137(38):12199-202. PubMed ID: 26335659 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]