BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

30 related articles for article (PubMed ID: 29065324)

  • 1. Simultaneous production of algal biomass and lipid by heterotrophic cultivation of linoleic acid-rich oleaginous microalga Chlorella sorokiniana using high acetate dosage.
    Gong G; Liu L; Wu B; Li J; He M; Hu G
    Bioresour Technol; 2024 May; 399():130566. PubMed ID: 38467262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating nutrient limitation in co-culture of Chlorella pyrenoidosa and Rhodobacter sphaeroides.
    Shen XF; Xu YP; Jiang YF; Gao LJ; Tong XQ; Gong J; Yang YF; Zeng RJ
    Sci Total Environ; 2024 Jan; 906():167706. PubMed ID: 37820812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced biomass and lipid production by light exposure with mixed culture of Rhodotorula glutinis and Chlorella vulgaris using acetate as sole carbon source.
    Gong G; Wu B; Liu L; Li J; He M; Hu G
    Bioresour Technol; 2022 Nov; 364():128139. PubMed ID: 36252765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiological and morphological responses of Chlorella pyrenoidosa to different exposure methods of graphene oxide quantum dots.
    You X; Chen C; Yang L; Xia X; Zhang Y; Zhou X
    Sci Total Environ; 2023 Jan; 854():158722. PubMed ID: 36108851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating cultivation strategies for enhancing protein content in Auxenochlorella pyrenoidosa FACHB-5.
    Wei Q; Yuan T; Li Z; Zhao D; Wang C; Yang G; Tang W; Ma X
    Bioresour Technol; 2024 Jun; 402():130828. PubMed ID: 38734260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of promotion in the heterotrophic growth of Chlorella vulgaris by the combination of sodium acetate and hydrolysate of broken rice.
    Cai Y; Zhai L; Wu K; Li Z; Gu Z; Wang Y; Cui X; Zhou T; Ruan R; Liu T; Liu Y; Zhang Q
    Bioresour Technol; 2022 Nov; 364():127965. PubMed ID: 36113821
    [TBL] [Abstract][Full Text] [Related]  

  • 7. UV mutagenesis improves growth potential of green algae in a green algae-yeast co-culture system.
    Karitani Y; Yamada R; Matsumoto T; Ogino H
    Arch Microbiol; 2024 Jan; 206(2):61. PubMed ID: 38216809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acidophilic algae isolated from mine-impacted environments and their roles in sustaining heterotrophic acidophiles.
    Nancucheo I; Barrie Johnson D
    Front Microbiol; 2012; 3():325. PubMed ID: 22973267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nutrient Exchange of Carbon and Nitrogen Promotes the Formation of Stable Mutualisms Between
    Naidoo RK; Simpson ZF; Oosthuizen JR; Bauer FF
    Front Microbiol; 2019; 10():609. PubMed ID: 30972051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of Different Pretreatment Processes Envisaging the Potential Use of Food Waste as Microalgae Substrate.
    Marques F; Pereira F; Machado L; Martins JT; Pereira RN; Costa MM; Genisheva Z; Pereira H; Vicente AA; Teixeira JA; Geada P
    Foods; 2024 Mar; 13(7):. PubMed ID: 38611325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Heterotrophic Culture Conditions for the Algae
    Wang K; Wang Z; Ding Y; Yu Y; Wang Y; Geng Y; Li Y; Wen X
    Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37375881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biotechnological Approaches for Biomass and Lipid Production Using Microalgae
    Je S; Yamaoka Y
    J Microbiol Biotechnol; 2022 Nov; 32(11):1357-1372. PubMed ID: 36310359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of C/N ratio on the growth and protein accumulation of heterotrophic Chlorella in broken rice hydrolysate.
    Cai Y; Zhai L; Fang X; Wu K; Liu Y; Cui X; Wang Y; Yu Z; Ruan R; Liu T; Zhang Q
    Biotechnol Biofuels Bioprod; 2022 Oct; 15(1):102. PubMed ID: 36209252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Carbon Conversion and Value-Added Compound Production in Heterotrophic
    Wu K; Fang Y; Hong B; Cai Y; Xie H; Wang Y; Cui X; Yu Z; Liu Y; Ruan R; Zhang Q
    Foods; 2022 Aug; 11(17):. PubMed ID: 36076765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential growth and lipid accumulation in Coccomyxa subellipsoidea triggered by glucose combining with sodium acetate.
    Wang Z; Luo F; Wang Z; Zhou R; Tang Y; Li Y
    World J Microbiol Biotechnol; 2019 Jul; 35(7):110. PubMed ID: 31280381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered
    Wang ZP; Wang QQ; Liu S; Liu XF; Yu XJ; Jiang YL
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30925836
    [No Abstract]   [Full Text] [Related]  

  • 17. Heterotrophic culture of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with immobilized yeast.
    Wang SK; Wang X; Tao HH; Sun XS; Tian YT
    Bioresour Technol; 2018 Feb; 249():425-430. PubMed ID: 29065324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A symbiotic yeast to enhance heterotrophic and mixotrophic cultivation of Chlorella pyrenoidosa using sucrose as the carbon source.
    Tian YT; Wang X; Cui YH; Wang SK
    Bioprocess Biosyst Eng; 2020 Dec; 43(12):2243-2252. PubMed ID: 32671549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterotrophic cultivation of Chlorella pyrenoidosa using sucrose as the sole carbon source by co-culture with Rhodotorula glutinis.
    Wang S; Wu Y; Wang X
    Bioresour Technol; 2016 Nov; 220():615-620. PubMed ID: 27619713
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.