These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 29065328)
1. Effect of zinc ions on nutrient removal and growth of Lemna aequinoctialis from anaerobically digested swine wastewater. Zhou Q; Lin Y; Li X; Yang C; Han Z; Zeng G; Lu L; He S Bioresour Technol; 2018 Feb; 249():457-463. PubMed ID: 29065328 [TBL] [Abstract][Full Text] [Related]
2. Phytoremediation of anaerobically digested swine wastewater contaminated by oxytetracycline via Lemna aequinoctialis: Nutrient removal, growth characteristics and degradation pathways. Hu H; Zhou Q; Li X; Lou W; Du C; Teng Q; Zhang D; Liu H; Zhong Y; Yang C Bioresour Technol; 2019 Nov; 291():121853. PubMed ID: 31377510 [TBL] [Abstract][Full Text] [Related]
3. Effects of Sulfamethazine and Cupric Ion on Treatment of Anaerobically Digested Swine Wastewater with Growing Duckweed. Xiao Y; Yang C; Cheng JJ Int J Environ Res Public Health; 2022 Feb; 19(4):. PubMed ID: 35206138 [TBL] [Abstract][Full Text] [Related]
4. Effects of copper ions on removal of nutrients from swine wastewater and on release of dissolved organic matter in duckweed systems. Zhou Q; Li X; Lin Y; Yang C; Tang W; Wu S; Li D; Lou W Water Res; 2019 Jul; 158():171-181. PubMed ID: 31035194 [TBL] [Abstract][Full Text] [Related]
5. Nutrient removal by duckweed from anaerobically treated swine wastewater in lab-scale stabilization ponds in Vietnam. Dinh TTU; Soda S; Nguyen TAH; Nakajima J; Cao TH Sci Total Environ; 2020 Jun; 722():137854. PubMed ID: 32197162 [TBL] [Abstract][Full Text] [Related]
6. [Growth feature of biomass of Lemna aequinoctialis and Spirodela polyrrhiza in medium with nutrient character of wastewater]. Chong YX; Hu HY; Qian Y Huan Jing Ke Xue; 2004 Nov; 25(6):59-64. PubMed ID: 15759882 [TBL] [Abstract][Full Text] [Related]
7. Responses of microalgae Coelastrella sp. to stress of cupric ions in treatment of anaerobically digested swine wastewater. Li X; Yang WL; He H; Wu S; Zhou Q; Yang C; Zeng G; Luo L; Lou W Bioresour Technol; 2018 Mar; 251():274-279. PubMed ID: 29288955 [TBL] [Abstract][Full Text] [Related]
8. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Zhao Z; Shi H; Liu Y; Zhao H; Su H; Wang M; Zhao Y Bioresour Technol; 2014 Sep; 167():383-9. PubMed ID: 24998479 [TBL] [Abstract][Full Text] [Related]
9. Cytotoxicity, chemical, and nutritional profile evaluation of biomass extracts of the Nati N; Galter IN; Souza Costa I; Fabre Garcia E; Amorim Lopes G; Seibert França H; Pompermayer Machado L; da Silva RMG; Tamie Matsumoto S J Toxicol Environ Health A; 2024 Dec; 87(23):934-952. PubMed ID: 39248695 [No Abstract] [Full Text] [Related]
10. Combined effects of temperature and nutrients on the toxicity of cadmium in duckweed (Lemna aequinoctialis). Yang J; Li G; Xia M; Chen Y; Chen Y; Kumar S; Sun Z; Li X; Zhao X; Hou H J Hazard Mater; 2022 Jun; 432():128646. PubMed ID: 35325863 [TBL] [Abstract][Full Text] [Related]
11. Production of selenium- and zinc-enriched Lemna and Azolla as potential micronutrient-enriched bioproducts. Li J; Lens PNL; Otero-Gonzalez L; Du Laing G Water Res; 2020 Apr; 172():115522. PubMed ID: 32006774 [TBL] [Abstract][Full Text] [Related]
12. Potential of duckweed (Lemna minor) for removal of nitrogen and phosphorus from water under salt stress. Liu C; Dai Z; Sun H J Environ Manage; 2017 Feb; 187():497-503. PubMed ID: 27856035 [TBL] [Abstract][Full Text] [Related]
13. On the rise: Development of a multi-tiered, indoor duckweed cultivation system. Coughlan NE; Maguire D; Oommen AA; Redmond C; O'Mahoney R; Walsh É; Kühnhold H; Byrne EP; Kavousi F; Morrison AP; Jansen MAK Water Environ Res; 2023 Dec; 95(12):e10964. PubMed ID: 38124406 [TBL] [Abstract][Full Text] [Related]
14. Removal of chromium ions from wastewater by duckweed, Lemna minor L. by using a pilot system with continuous flow. Uysal Y J Hazard Mater; 2013 Dec; 263 Pt 2():486-92. PubMed ID: 24231333 [TBL] [Abstract][Full Text] [Related]
15. Effects of high ammonium level on biomass accumulation of common duckweed Lemna minor L. Wang W; Yang C; Tang X; Gu X; Zhu Q; Pan K; Hu Q; Ma D Environ Sci Pollut Res Int; 2014 Dec; 21(24):14202-10. PubMed ID: 25056754 [TBL] [Abstract][Full Text] [Related]
16. Light intensity alters the phytoremediation potential of Lemna minor. Walsh É; Kuehnhold H; O'Brien S; Coughlan NE; Jansen MAK Environ Sci Pollut Res Int; 2021 Apr; 28(13):16394-16407. PubMed ID: 33387327 [TBL] [Abstract][Full Text] [Related]
17. Growing duckweed in swine wastewater for nutrient recovery and biomass production. Xu J; Shen G Bioresour Technol; 2011 Jan; 102(2):848-53. PubMed ID: 20869239 [TBL] [Abstract][Full Text] [Related]
18. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems. Shi W; Wang L; Rousseau DP; Lens PN Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308 [TBL] [Abstract][Full Text] [Related]
19. Sorption of cadmium, chromium, lead, and vanadium from artificial wetlands using Ekperusi AO; Sikoki FD; Nwachukwu EO Int J Phytoremediation; 2024; 26(6):873-881. PubMed ID: 37897245 [TBL] [Abstract][Full Text] [Related]
20. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production. Zhao Y; Fang Y; Jin Y; Huang J; Bao S; Fu T; He Z; Wang F; Wang M; Zhao H Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():82-90. PubMed ID: 24942851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]