These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

548 related articles for article (PubMed ID: 29065480)

  • 1. Effect of Steam Deactivation Severity of ZSM-5 Additives on LPG Olefins Production in the FCC Process.
    Gusev AA; Psarras AC; Triantafyllidis KS; Lappas AA; Diddams PA
    Molecules; 2017 Oct; 22(10):. PubMed ID: 29065480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steam catalytic cracking and lump kinetics of naphtha to light olefins over nanocrystalline ZSM-5 zeolite.
    Al-Shafei EN; Aljishi AN; Shakoor ZM; Albahar MZ; Aljishi MF; Alasseel A
    RSC Adv; 2023 Aug; 13(37):25804-25816. PubMed ID: 37664195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput investigation of catalysts for JP-8 fuel cracking to liquefied petroleum gas.
    Bedenbaugh JE; Kim S; Sasmaz E; Lauterbach J
    ACS Comb Sci; 2013 Sep; 15(9):491-7. PubMed ID: 23879196
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic cracking of C5 raffinate to light olefins over phosphorous-modified microporous and mesoporous ZSM-5.
    Lee J; Hong UG; Hwang S; Youn MH; Song IK
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7504-10. PubMed ID: 24245282
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Staining of fluid-catalytic-cracking catalysts: localising Brønsted acidity within a single catalyst particle.
    Buurmans IL; Ruiz-Martínez J; van Leeuwen SL; van der Beek D; Bergwerff JA; Knowles WV; Vogt ET; Weckhuysen BM
    Chemistry; 2012 Jan; 18(4):1094-101. PubMed ID: 22161809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the different life stages of a fluid catalytic cracking particle with integrated laser and electron microscopy.
    Karreman MA; Buurmans IL; Agronskaia AV; Geus JW; Gerritsen HC; Weckhuysen BM
    Chemistry; 2013 Mar; 19(12):3846-59. PubMed ID: 23447400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution single-molecule fluorescence imaging of zeolite aggregates within real-life fluid catalytic cracking particles.
    Ristanović Z; Kerssens MM; Kubarev AV; Hendriks FC; Dedecker P; Hofkens J; Roeffaers MB; Weckhuysen BM
    Angew Chem Int Ed Engl; 2015 Feb; 54(6):1836-40. PubMed ID: 25504139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waste catalysts for waste polymer.
    Salmiaton A; Garforth A
    Waste Manag; 2007; 27(12):1891-6. PubMed ID: 17084608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Catalyst in Optimizing Fluid Catalytic Cracking Performance During Cracking of H-Oil-Derived Gas Oils.
    Stratiev D; Shishkova I; Ivanov M; Dinkov R; Georgiev B; Argirov G; Atanassova V; Vassilev P; Atanassov K; Yordanov D; Popov A; Padovani A; Hartmann U; Brandt S; Nenov S; Sotirov S; Sotirova E
    ACS Omega; 2021 Mar; 6(11):7626-7637. PubMed ID: 33778273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active sites, deactivation and stabilization of Fe-ZSM-5 for the selective catalytic reduction (SCR) of NO with NH(3).
    Kröcher O; Brandenberger S
    Chimia (Aarau); 2012; 66(9):687-93. PubMed ID: 23211727
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single Particle Assays to Determine Heterogeneities within Fluid Catalytic Cracking Catalysts.
    Nieuwelink AE; Velthoen MEZ; Nederstigt YCM; Jagtenberg KL; Meirer F; Weckhuysen BM
    Chemistry; 2020 Jul; 26(39):8546-8554. PubMed ID: 32112709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic conversion of heavy naphtha to reformate over the phosphorus-ZSM-5 catalyst at a lower reforming temperature.
    Al-Shafei EN; Albahar MZ; Aljishi MF; Akah A; Aljishi AN; Alasseel A
    RSC Adv; 2022 Sep; 12(39):25465-25477. PubMed ID: 36199298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts.
    Gurdeep Singh HK; Yusup S; Quitain AT; Abdullah B; Ameen M; Sasaki M; Kida T; Cheah KW
    Environ Res; 2020 Jul; 186():109616. PubMed ID: 32668556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical upcycling of PVC-containing plastic wastes by thermal degradation and catalysis in a chlorine-rich environment.
    Kang J; Kim JY; Sung S; Lee Y; Gu S; Choi JW; Yoo CJ; Suh DJ; Choi J; Ha JM
    Environ Pollut; 2024 Feb; 342():123074. PubMed ID: 38048870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in a dual-catalyst fixed bed reactor.
    Yang M; Shao J; Yang H; Zeng K; Wu Z; Chen Y; Bai X; Chen H
    Bioresour Technol; 2019 Feb; 273():77-85. PubMed ID: 30415072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the selectivity for light olefins through catalytic cracking of n-hexane by phosphorus doping on lanthanum-modified ZSM-5.
    Ali MF; He M; Rizwan M; Song Y; Zhou X; Asif Nawaz M; Sun H; Zhou M; Jiang P
    Front Chem; 2024; 12():1368595. PubMed ID: 38835725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recycling of polymer waste with fluid catalytic cracking catalysts.
    Ali S; Garforth A; Fakhru'l-Razi A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(6):1145-54. PubMed ID: 16760091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NH3-SCR performance of fresh and hydrothermally aged Fe-ZSM-5 in standard and fast selective catalytic reduction reactions.
    Shi X; Liu F; Xie L; Shan W; He H
    Environ Sci Technol; 2013 Apr; 47(7):3293-8. PubMed ID: 23477804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulating light olefins or aromatics production in ex-situ catalytic pyrolysis of biomass by engineering the structure of tin modified ZSM-5 catalyst.
    Shang J; Fu G; Cai Z; Feng X; Tuo Y; Zhou X; Yan H; Peng C; Jin X; Liu Y; Chen X; Yang C; Chen D
    Bioresour Technol; 2021 Jun; 330():124975. PubMed ID: 33770733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory Production of Biofuels and Biochemicals from a Rapeseed Oil through Catalytic Cracking Conversion.
    Ng SH; Shi Y; Heshka NE; Zhang Y; Little E
    J Vis Exp; 2016 Sep; (115):. PubMed ID: 27684325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.