These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 29065561)

  • 1. Cl-Assisted Large Scale Synthesis of Cm-Scale Buckypapers of Fe₃C-Filled Carbon Nanotubes with Pseudo-Capacitor Properties: The Key Role of SBA-16 Catalyst Support as Synthesis Promoter.
    Boi FS; He Y; Wen J; Wang S; Yan K; Zhang J; Medranda D; Borowiec J; Corrias A
    Materials (Basel); 2017 Oct; 10(10):. PubMed ID: 29065561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of cm scale buckypapers of horizontally aligned multiwalled carbon nanotubes highly filled with Fe3C: the key roles of Cl and Ar-flow rates.
    Boi FS; Guo J; Wang S; He Y; Xiang G; Zhang X; Baxendale M
    Chem Commun (Camb); 2016 Mar; 52(22):4195-8. PubMed ID: 26905009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailored CNTs Buckypaper Membranes for the Removal of Humic Acid and Separation of Oil-in-Water Emulsions.
    Elnabawy E; Elsherbiny IMA; Abdelsamad AMA; Anis B; Hassan A; Ulbricht M; Khalil ASG
    Membranes (Basel); 2020 May; 10(5):. PubMed ID: 32408564
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly oriented carbon nanotube papers made of aligned carbon nanotubes.
    Wang D; Song P; Liu C; Wu W; Fan S
    Nanotechnology; 2008 Feb; 19(7):075609. PubMed ID: 21817646
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotubes buckypapers for potential transdermal drug delivery.
    Schwengber A; Prado HJ; Zilli DA; Bonelli PR; Cukierman AL
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():7-13. PubMed ID: 26354234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stiff diamond/buckypaper carbon hybrids.
    Holz T; Mata D; Santos NF; Bdikin I; Fernandes AJ; Costa FM
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22649-54. PubMed ID: 25412196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes.
    Donato MG; Galvagno S; Lanza M; Messina G; Milone C; Piperopoulos E; Pistone A; Santangelo S
    J Nanosci Nanotechnol; 2009 Jun; 9(6):3815-23. PubMed ID: 19504925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method.
    Abdulkareem AS; Afolabi AS; Iyuke SE; Vz Pienaar HC
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3233-8. PubMed ID: 18019155
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced saturation magnetization in buckypaper-films of thin walled carbon nanostructures filled with Fe3C, FeCo, FeNi, CoNi, Co and Ni crystals: the key role of Cl.
    Guo J; Lan M; Wang S; He Y; Zhang S; Xiang G; Boi FS
    Phys Chem Chem Phys; 2015 Jul; 17(27):18159-66. PubMed ID: 26102508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and Properties of Highly Electroconductive and Heat-Resistant CMC/Buckypaper/Epoxy Nanocomposites.
    Zheng T; Wang G; Xu N; Lu C; Qiao Y; Zhang D; Wang X
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30477224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites.
    Ramoraswi NO; Ndungu PG
    Nanoscale Res Lett; 2015 Dec; 10(1):427. PubMed ID: 26518026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size- and shape-controlled synthesis of well-organised carbon nanotubes using nanoporous anodic alumina with different pore diameters.
    Mezni A; Altalhi T; Saber NB; Aldalbahi A; Boulehmi S; Santos A; Losic D
    J Colloid Interface Sci; 2017 Apr; 491():375-389. PubMed ID: 28063372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-heating effect on the catalytic growth of partially filled carbon nanotubes by chemical vapor deposition.
    Sengupta J; Jacob C
    J Nanosci Nanotechnol; 2010 May; 10(5):3064-71. PubMed ID: 20358900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper.
    Shen Z; Röding M; Kröger M; Li Y
    Polymers (Basel); 2017 Mar; 9(4):. PubMed ID: 30970795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of Fe/MgO catalyst support precursors for the chemical vapour deposition growth of carbon nanotubes.
    Palizdar M; Ahgababazadeh R; Mirhabibi A; Brydson R; Pilehvari S
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5345-51. PubMed ID: 21770187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generic Mechanochemical Grafting Strategy toward Organophilic Carbon Nanotubes.
    Yang Z; Kuang W; Tang Z; Guo B; Zhang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(8):7666-7674. PubMed ID: 28168871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directly measuring of thermal pulse transfer in one-dimensional highly aligned carbon nanotubes.
    Zhang G; Liu C; Fan S
    Sci Rep; 2013; 3():2549. PubMed ID: 23989589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ferromagnetically filled carbon nano-onions: the key role of sulfur in dimensional, structural and electric control.
    Medranda D; Borowiec J; Zhang X; Wang S; Yan K; Zhang J; He Y; Ivaturi S; Boi FS
    R Soc Open Sci; 2018 Jan; 5(1):170981. PubMed ID: 29410810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Comparative Study between Knocked-Down Aligned Carbon Nanotubes and Buckypaper-Based Strain Sensors.
    Santos A; Amorim L; Nunes JP; Rocha LA; Silva AF; Viana JC
    Materials (Basel); 2019 Jun; 12(12):. PubMed ID: 31234602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and microwave absorption performance of a flexible Fe
    Wang J; Jiao J; Sun G; Yuan K; Guan Z; Wei X
    RSC Adv; 2019 Nov; 9(65):37870-37881. PubMed ID: 35541814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.