These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 29065568)

  • 1. Handling Data Skew in MapReduce Cluster by Using Partition Tuning.
    Gao Y; Zhou Y; Zhou B; Shi L; Zhang J
    J Healthc Eng; 2017; 2017():1425102. PubMed ID: 29065568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Handling Data Skew in MapReduce Cluster by Using Partition Tuning.
    Gao Y; Zhou Y; Zhou B; Shi L; Zhang J
    J Healthc Eng; 2017; 2017():. PubMed ID: 29068640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Applications of the MapReduce programming framework to clinical big data analysis: current landscape and future trends.
    Mohammed EA; Far BH; Naugler C
    BioData Min; 2014; 7():22. PubMed ID: 25383096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hadoop/MapReduce Based Platform for Supporting Health Big Data Analytics.
    Kuo A; Chrimes D; Qin P; Zamani H
    Stud Health Technol Inform; 2019; 257():229-235. PubMed ID: 30741201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and development of a medical big data processing system based on Hadoop.
    Yao Q; Tian Y; Li PF; Tian LL; Qian YM; Li JS
    J Med Syst; 2015 Mar; 39(3):23. PubMed ID: 25666927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic algorithm-based job scheduling model for big data analytics.
    Lu Q; Li S; Zhang W; Zhang L
    EURASIP J Wirel Commun Netw; 2016; 2016():152. PubMed ID: 27429611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STDADS: An Efficient Slow Task Detection Algorithm for Deadline Schedulers.
    Upadhyay U; Sikka G
    Big Data; 2020 Feb; 8(1):62-69. PubMed ID: 31995397
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling big geoscience data analytics with a cloud-based, MapReduce-enabled and service-oriented workflow framework.
    Li Z; Yang C; Jin B; Yu M; Liu K; Sun M; Zhan M
    PLoS One; 2015; 10(3):e0116781. PubMed ID: 25742012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRPack: Multi-Algorithm Execution Using Compute-Intensive Approach in MapReduce.
    Idris M; Hussain S; Siddiqi MH; Hassan W; Syed Muhammad Bilal H; Lee S
    PLoS One; 2015; 10(8):e0136259. PubMed ID: 26305223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards an efficient and Energy-Aware mobile big health data architecture.
    Navaz AN; Serhani MA; Al-Qirim N; Gergely M
    Comput Methods Programs Biomed; 2018 Nov; 166():137-154. PubMed ID: 30415713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long Read Alignment with Parallel MapReduce Cloud Platform.
    Al-Absi AA; Kang DK
    Biomed Res Int; 2015; 2015():807407. PubMed ID: 26839887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced Time Compression in Big Data Using MapReduce Approach and Hadoop.
    Meena K; Sujatha J
    J Med Syst; 2019 Jun; 43(8):239. PubMed ID: 31218510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyzing big datasets of genomic sequences: fast and scalable collection of k-mer statistics.
    Ferraro Petrillo U; Sorella M; Cattaneo G; Giancarlo R; Rombo SE
    BMC Bioinformatics; 2019 Apr; 20(Suppl 4):138. PubMed ID: 30999863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MRS-DP: Improving Performance and Resource Utilization of Big Data Applications with Deadlines and Priorities.
    Upadhyay U; Sikka G
    Big Data; 2020 Aug; 8(4):323-331. PubMed ID: 32820950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SparkGIS: Resource Aware Efficient In-Memory Spatial Query Processing.
    Baig F; Vo H; Kurc T; Saltz J; Wang F
    Proc ACM SIGSPATIAL Int Conf Adv Inf; 2017 Nov; 2017():. PubMed ID: 30035278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a Big Data Accessing and Processing Platform for Medical Records in Cloud.
    Yang CT; Liu JC; Chen ST; Lu HW
    J Med Syst; 2017 Aug; 41(10):149. PubMed ID: 28822042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large-scale parallel genome assembler over cloud computing environment.
    Das AK; Koppa PK; Goswami S; Platania R; Park SJ
    J Bioinform Comput Biol; 2017 Jun; 15(3):1740003. PubMed ID: 28610458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. HBLAST: Parallelised sequence similarity--A Hadoop MapReducable basic local alignment search tool.
    O'Driscoll A; Belogrudov V; Carroll J; Kropp K; Walsh P; Ghazal P; Sleator RD
    J Biomed Inform; 2015 Apr; 54():58-64. PubMed ID: 25625550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MapReduce in the Cloud: A Use Case Study for Efficient Co-Occurrence Processing of MEDLINE Annotations with MeSH.
    Kreuzthaler M; Miñarro-Giménez JA; Schulz S
    Stud Health Technol Inform; 2016; 228():582-6. PubMed ID: 27577450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel MapReduce: Maximizing Cloud Resource Utilization and Performance Improvement Using Parallel Execution Strategies.
    Al-Absi AA; Al-Sammarraie NA; Shaher Yafooz WM; Kang DK
    Biomed Res Int; 2018; 2018():7501042. PubMed ID: 30417014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.