These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 29065571)
1. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571 [TBL] [Abstract][Full Text] [Related]
2. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot. Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L J Healthc Eng; 2017; 2017():. PubMed ID: 29068644 [TBL] [Abstract][Full Text] [Related]
3. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors. Feng Y; Wang H; Vladareanu L; Chen Z; Jin D Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739 [TBL] [Abstract][Full Text] [Related]
4. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities. Eiammanussakul T; Sangveraphunsiri V J Healthc Eng; 2018; 2018():1927807. PubMed ID: 29808109 [TBL] [Abstract][Full Text] [Related]
5. Design and kinematical performance analysis of the 7-DOF upper-limb exoskeleton toward improving human-robot interface in active and passive movement training. Meng Q; Fei C; Jiao Z; Xie Q; Dai Y; Fan Y; Shen Z; Yu H Technol Health Care; 2022; 30(5):1167-1182. PubMed ID: 35342067 [TBL] [Abstract][Full Text] [Related]
6. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke. Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057 [TBL] [Abstract][Full Text] [Related]
8. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training. Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256 [TBL] [Abstract][Full Text] [Related]
9. Design of a control framework for lower limb exoskeleton rehabilitation robot based on predictive assessment. Wang Y; Liu Z; Feng Z Clin Biomech (Bristol); 2022 May; 95():105660. PubMed ID: 35561659 [TBL] [Abstract][Full Text] [Related]
10. Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots. Yan H; Wang H; Vladareanu L; Lin M; Vladareanu V; Li Y Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661870 [TBL] [Abstract][Full Text] [Related]
11. Research on a New Rehabilitation Robot for Balance Disorders. Wu J; Liu Y; Zhao J; Jia Z IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3927-3936. PubMed ID: 37676800 [TBL] [Abstract][Full Text] [Related]
12. Design and analysis of a compatible exoskeleton rehabilitation robot system based on upper limb movement mechanism. Ning Y; Wang H; Liu Y; Wang Q; Rong Y; Niu J Med Biol Eng Comput; 2024 Mar; 62(3):883-899. PubMed ID: 38081953 [TBL] [Abstract][Full Text] [Related]
13. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke. Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181 [TBL] [Abstract][Full Text] [Related]
14. Experiments and kinematics analysis of a hand rehabilitation exoskeleton with circuitous joints. Zhang F; Fu Y; Zhang Q; Wang S Biomed Mater Eng; 2015; 26 Suppl 1():S665-72. PubMed ID: 26406062 [TBL] [Abstract][Full Text] [Related]
15. Robustness and Tracking Performance Evaluation of PID Motion Control of 7 DoF Anthropomorphic Exoskeleton Robot Assisted Upper Limb Rehabilitation. Ahmed T; Islam MR; Brahmi B; Rahman MH Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632155 [TBL] [Abstract][Full Text] [Related]
16. Architectural design and development of an upper-limb rehabilitation device: a modular synthesis approach. Gupta S; Agrawal A; Singla E Disabil Rehabil Assist Technol; 2024 Jan; 19(1):139-153. PubMed ID: 35549593 [TBL] [Abstract][Full Text] [Related]
17. Development of a powered variable-stiffness exoskeleton device for elbow rehabilitation. Liu Y; Guo S; Hirata H; Ishihara H; Tamiya T Biomed Microdevices; 2018 Aug; 20(3):64. PubMed ID: 30074095 [TBL] [Abstract][Full Text] [Related]
18. Feasibility and safety of early lower limb robot-assisted training in sub-acute stroke patients: a pilot study. Gandolfi M; Geroin C; Tomelleri C; Maddalena I; Kirilova Dimitrova E; Picelli A; Smania N; Waldner A Eur J Phys Rehabil Med; 2017 Dec; 53(6):870-882. PubMed ID: 28084064 [TBL] [Abstract][Full Text] [Related]
19. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]