These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29065575)

  • 1. Inertial Sensor-Based Motion Analysis of Lower Limbs for Rehabilitation Treatments.
    Sun T; Li H; Liu Q; Duan L; Li M; Wang C; Liu Q; Li W; Shang W; Wu Z; Wang Y
    J Healthc Eng; 2017; 2017():1949170. PubMed ID: 29065575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inertial Sensor-Based Motion Analysis of Lower Limbs for Rehabilitation Treatments.
    Sun T; Li H; Liu Q; Duan L; Li M; Wang C; Liu Q; Li W; Shang W; Wu Z; Wang Y
    J Healthc Eng; 2017; 2017():. PubMed ID: 29072400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A preliminary test of measurement of joint angles and stride length with wireless inertial sensors for wearable gait evaluation system.
    Watanabe T; Saito H; Koike E; Nitta K
    Comput Intell Neurosci; 2011; 2011():975193. PubMed ID: 21941531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Wearable Lower Limb Rehabilitation Exoskeleton Kinematic Analysis and Simulation.
    Li J; Peng J; Lu Z; Huang K
    Biomed Res Int; 2022; 2022():5029663. PubMed ID: 36072470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A wearable pelvic sensor design for drop foot treatment in post-stroke patients.
    O'Keeffe DT; Gates DH; Bonato P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1820-3. PubMed ID: 18002333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm.
    Ota M; Tateuchi H; Hashiguchi T; Ichihashi N
    Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of wearable inertial sensor-based gait analysis system for measurement of spatiotemporal parameters and lower extremity joint kinematics in sagittal plane.
    Patel G; Mullerpatan R; Agarwal B; Shetty T; Ojha R; Shaikh-Mohammed J; Sujatha S
    Proc Inst Mech Eng H; 2022 May; 236(5):686-696. PubMed ID: 35001713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Balance and knee extensibility evaluation of hemiplegic gait using an inertial body sensor network.
    Guo Y; Zhao G; Liu Q; Mei Z; Ivanov K; Wang L
    Biomed Eng Online; 2013 Aug; 12():83. PubMed ID: 23988116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of normal-walking-pattern-based functional electrical stimulation on gait of the lower extremity in subjects with ischemic stroke: A self controlled study.
    Xu B; Yan T; Yang Y; Ou R; Huang S
    NeuroRehabilitation; 2016; 38(2):163-9. PubMed ID: 26889732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A trial of making reference gait data for simple gait evaluation system with wireless inertial sensors.
    Karasawa Y; Teruyama Y; Watanabe T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3427-30. PubMed ID: 24110465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors.
    Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Online tracking of the lower body joint angles using IMUs for gait rehabilitation.
    Joukov V; Karg M; Kulic D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2310-3. PubMed ID: 25570450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-Contraction of Lower Limb Muscles Contributes to Knee Stability During Stance Phase in Hemiplegic Stroke Patients.
    Yuan H; Ge P; Du L; Xia Q
    Med Sci Monit; 2019 Oct; 25():7443-7450. PubMed ID: 31584038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gait pattern of severely disabled hemiparetic subjects on a new controlled gait trainer as compared to assisted treadmill walking with partial body weight support.
    Hesse S; Uhlenbrock D; Sarkodie-Gyan T
    Clin Rehabil; 1999 Oct; 13(5):401-10. PubMed ID: 10498347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics.
    Niswander W; Wang W; Kontson K
    Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Error-state Kalman filter for lower-limb kinematic estimation: Evaluation on a 3-body model.
    Potter MV; Cain SM; Ojeda LV; Gurchiek RD; McGinnis RS; Perkins NC
    PLoS One; 2021; 16(4):e0249577. PubMed ID: 33878142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial measurements of upper limb motion.
    Zhou H; Hu H; Tao Y
    Med Biol Eng Comput; 2006 Jun; 44(6):479-87. PubMed ID: 16937199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal combination of minimum degrees of freedom to be actuated in the lower limbs to facilitate arm-free paraplegic standing.
    Kim JY; Mills JK; Vette AH; Popovic MR
    J Biomech Eng; 2007 Dec; 129(6):838-47. PubMed ID: 18067387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tests of wireless wearable sensor system in joint angle measurement of lower limbs.
    Watanabe T; Saito H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5469-72. PubMed ID: 22255575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.