These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29065636)

  • 1. Iterative Learning Impedance for Lower Limb Rehabilitation Robot.
    Guo C; Guo S; Ji J; Xi F
    J Healthc Eng; 2017; 2017():6732459. PubMed ID: 29065636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upper limb stroke rehabilitation: the effectiveness of Stimulation Assistance through Iterative Learning (SAIL).
    Meadmore KL; Cai Z; Tong D; Hughes AM; Freeman CT; Rogers E; Burridge JH
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975502. PubMed ID: 22275698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model based control of a rehabilitation robot for lower extremities.
    Xie XL; Hou ZG; Li PF; Ji C; Zhang F; Tan M; Wang H; Hu G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2263-6. PubMed ID: 21097222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upper-Limb Rehabilitation of Patients with Neuromotor Deficits Using Impedance-Based Control of a 6-DOF Robot.
    Behidj A; Achiche S; Mohebbi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38082642
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot.
    Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L
    J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction force and motion estimators facilitating impedance control of the upper limb rehabilitation robot.
    Mancisidor A; Zubizarreta A; Cabanes I; Bengoa P; Jung JH
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():561-566. PubMed ID: 28813879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical stimulation and iterative learning control for functional recovery in the upper limb post-stroke.
    Meadmore K; Exell T; Freeman C; Kutlu M; Rogers E; Hughes AM; Hallewell E; Burridge J
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650359. PubMed ID: 24187178
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Position Based Impedance Control Strategy for a Lower Limb Rehabilitation Robot.
    Liang X; Wang W; Hou ZG; Ren S; Wang J; Shi W; Peng L; Su T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():437-441. PubMed ID: 31945932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation.
    Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human voluntary activity integration in the control of a standing-up rehabilitation robot: a simulation study.
    Kamnik R; Bajd T
    Med Eng Phys; 2007 Nov; 29(9):1019-29. PubMed ID: 17098459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robotics in Lower-Limb Rehabilitation after Stroke.
    Zhang X; Yue Z; Wang J
    Behav Neurol; 2017; 2017():3731802. PubMed ID: 28659660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patient adaptive control of end-effector based gait rehabilitation devices using a haptic control framework.
    Hussein S; Kruger J
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975451. PubMed ID: 22275649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on possible control algorithms for lower limb rehabilitation system.
    Kordasz M; Kuczkowski K; Sauer P
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975450. PubMed ID: 22275648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modifying upper-limb inter-joint coordination in healthy subjects by training with a robotic exoskeleton.
    Proietti T; Guigon E; Roby-Brami A; Jarrassé N
    J Neuroeng Rehabil; 2017 Jun; 14(1):55. PubMed ID: 28606179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Individual deformability compensation of soft hydraulic actuators through iterative learning-based neural network.
    Sugiyama T; Kutsuzawa K; Owaki D; Hayashibe M
    Bioinspir Biomim; 2021 Nov; 16(5):. PubMed ID: 34359064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Study on Upper-Limb Rehabilitation Training of Stroke Patients Based on Adaptive Task Level: A Preliminary Study.
    Pan L; Song A; Wang S; Duan S
    Biomed Res Int; 2019; 2019():2742595. PubMed ID: 30915351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.