These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 29065636)
21. Iterative learning-based decentralized adaptive tracker for large-scale systems: a digital redesign approach. Tsai JS; Du YY; Huang PH; Guo SM; Shieh LS; Chen Y ISA Trans; 2011 Jul; 50(3):344-56. PubMed ID: 21333988 [TBL] [Abstract][Full Text] [Related]
22. Robot-assisted humanized passive rehabilitation training based on online assessment and regulation. Pan L; Song A; Duan S; Xu B Biomed Mater Eng; 2015; 26 Suppl 1():S655-64. PubMed ID: 26406061 [TBL] [Abstract][Full Text] [Related]
23. Performance-based robotic assistance during rhythmic arm exercises. Leconte P; Ronsse R J Neuroeng Rehabil; 2016 Sep; 13(1):82. PubMed ID: 27623806 [TBL] [Abstract][Full Text] [Related]
24. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism. Pan L; Song A; Duan S; Yu Z Biomed Res Int; 2017; 2017():4185939. PubMed ID: 28194413 [TBL] [Abstract][Full Text] [Related]
25. Arm stiffness during assisted movement after stroke: the influence of visual feedback and training. Piovesan D; Morasso P; Giannoni P; Casadio M IEEE Trans Neural Syst Rehabil Eng; 2013 May; 21(3):454-65. PubMed ID: 23193322 [TBL] [Abstract][Full Text] [Related]
26. Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Hughes AM; Freeman CT; Burridge JH; Chappell PH; Lewin PL; Rogers E Neurorehabil Neural Repair; 2009; 23(6):559-68. PubMed ID: 19190087 [TBL] [Abstract][Full Text] [Related]
27. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Bortole M; Venkatakrishnan A; Zhu F; Moreno JC; Francisco GE; Pons JL; Contreras-Vidal JL J Neuroeng Rehabil; 2015 Jun; 12():54. PubMed ID: 26076696 [TBL] [Abstract][Full Text] [Related]
28. Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke. Pila O; Duret C; Laborne FX; Gracies JM; Bayle N; Hutin E J Neuroeng Rehabil; 2017 Oct; 14(1):105. PubMed ID: 29029633 [TBL] [Abstract][Full Text] [Related]
29. Virtual Reality to Assess and Treat Lower Extremity Disorders in Post-stroke Patients. Luque-Moreno C; Oliva-Pascual-Vaca A; Kiper P; Rodríguez-Blanco C; Agostini M; Turolla A Methods Inf Med; 2016; 55(1):89-92. PubMed ID: 26660161 [TBL] [Abstract][Full Text] [Related]
30. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation. Taha Z; Abdul Majeed APP; Zainal Abidin AF; Hashem Ali MA; Khairuddin IM; Deboucha A; Wong Paul Tze MY Biomed Tech (Berl); 2018 Jul; 63(4):491-500. PubMed ID: 28809745 [TBL] [Abstract][Full Text] [Related]
31. Kinematic data analysis for post-stroke patients following bilateral versus unilateral rehabilitation with an upper limb wearable robotic system. Kim H; Miller LM; Fedulow I; Simkins M; Abrams GM; Byl N; Rosen J IEEE Trans Neural Syst Rehabil Eng; 2013 Mar; 21(2):153-64. PubMed ID: 22855233 [TBL] [Abstract][Full Text] [Related]
32. Development, Dynamic Modeling, and Multi-Modal Control of a Therapeutic Exoskeleton for Upper Limb Rehabilitation Training. Wu Q; Wu H Sensors (Basel); 2018 Oct; 18(11):. PubMed ID: 30356005 [TBL] [Abstract][Full Text] [Related]
33. Simultaneous Recognition and Assessment of Post-Stroke Hemiparetic Gait by Fusing Kinematic, Kinetic, and Electrophysiological Data. Cui C; Bian GB; Hou ZG; Zhao J; Su G; Zhou H; Peng L; Wang W IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):856-864. PubMed ID: 29641390 [TBL] [Abstract][Full Text] [Related]
34. Comparison of exercise training effect with different robotic devices for upper limb rehabilitation: a retrospective study. Colombo R; Pisano F; Delconte C; Mazzone A; Grioni G; Castagna M; Bazzini G; Imarisio C; Maggioni G; Pistarini C Eur J Phys Rehabil Med; 2017 Apr; 53(2):240-248. PubMed ID: 27676203 [TBL] [Abstract][Full Text] [Related]
35. Development and preliminary evaluation of a novel low cost VR-based upper limb stroke rehabilitation platform using Wii technology. Tsekleves E; Paraskevopoulos IT; Warland A; Kilbride C Disabil Rehabil Assist Technol; 2016; 11(5):413-22. PubMed ID: 25391221 [TBL] [Abstract][Full Text] [Related]
36. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum. Ghannadi B; Sharif Razavian R; McPhee J Front Robot AI; 2018; 5():124. PubMed ID: 33501003 [TBL] [Abstract][Full Text] [Related]
37. Robotic Impedance Learning for Robot-Assisted Physical Training. Li Y; Zhou X; Zhong J; Li X Front Robot AI; 2019; 6():78. PubMed ID: 33501093 [TBL] [Abstract][Full Text] [Related]
38. Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation. Michmizos KP; Rossi S; Castelli E; Cappa P; Krebs HI IEEE Trans Neural Syst Rehabil Eng; 2015 Nov; 23(6):1056-67. PubMed ID: 25769168 [TBL] [Abstract][Full Text] [Related]
39. Control system design of a 3-DOF upper limbs rehabilitation robot. Denève A; Moughamir S; Afilal L; Zaytoon J Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080 [TBL] [Abstract][Full Text] [Related]
40. Kinematic measures for upper limb motor assessment during robot-mediated training in patients with severe sub-acute stroke. Duret C; Courtial O; Grosmaire AG Restor Neurol Neurosci; 2016; 34(2):237-45. PubMed ID: 26890098 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]