These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 29065670)
21. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect. Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967 [TBL] [Abstract][Full Text] [Related]
22. The effect of hydroxyapatite in biopolymer-based scaffolds on release of naproxen sodium. Asadian-Ardakani V; Saber-Samandari S; Saber-Samandari S J Biomed Mater Res A; 2016 Dec; 104(12):2992-3003. PubMed ID: 27449255 [TBL] [Abstract][Full Text] [Related]
23. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair. Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684 [TBL] [Abstract][Full Text] [Related]
24. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair. Guillaume O; Geven MA; Sprecher CM; Stadelmann VA; Grijpma DW; Tang TT; Qin L; Lai Y; Alini M; de Bruijn JD; Yuan H; Richards RG; Eglin D Acta Biomater; 2017 May; 54():386-398. PubMed ID: 28286037 [TBL] [Abstract][Full Text] [Related]
25. [Research on the mechanical properties of bone scaffold reinforced by magnesium alloy/bioceramics composite with stereolithography double channels]. Li C; Lian Q; Zhuang P; Wang J; Li D Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Feb; 32(1):77-81. PubMed ID: 25997270 [TBL] [Abstract][Full Text] [Related]
26. Fabrication and characterization of highly porous barium titanate based scaffold coated by Gel/HA nanocomposite with high piezoelectric coefficient for bone tissue engineering applications. Ehterami A; Kazemi M; Nazari B; Saraeian P; Azami M J Mech Behav Biomed Mater; 2018 Mar; 79():195-202. PubMed ID: 29306083 [TBL] [Abstract][Full Text] [Related]
27. Synthesis and characterization of gentamicin loaded ZSM-5 scaffold: Cytocompatibility and antibacterial activity. Nazemi N; Rajabi N; Aslani Z; Kharaziha M; Kasiri-Asgarani M; Bakhsheshi-Rad HR; Najafinezhad A; Ismail AF; Sharif S; Berto F J Biomater Appl; 2023 Jan; 37(6):979-991. PubMed ID: 36454961 [TBL] [Abstract][Full Text] [Related]
29. Modified n-HA/PA66 scaffolds with chitosan coating for bone tissue engineering: cell stimulation and drug release. Zou Q; Li J; Niu L; Zuo Y; Li J; Li Y J Biomater Sci Polym Ed; 2017 Sep; 28(13):1271-1285. PubMed ID: 28402219 [TBL] [Abstract][Full Text] [Related]
30. Development of poly(vinyl alcohol) porous scaffold with high strength and well ciprofloxacin release efficiency. Zhou XH; Wei DX; Ye HM; Zhang X; Meng X; Zhou Q Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():326-335. PubMed ID: 27287128 [TBL] [Abstract][Full Text] [Related]
31. Biological advantages of porous hydroxyapatite scaffold made by solid freeform fabrication for bone tissue regeneration. Kwon BJ; Kim J; Kim YH; Lee MH; Baek HS; Lee DH; Kim HL; Seo HJ; Lee MH; Kwon SY; Koo MA; Park JC Artif Organs; 2013 Jul; 37(7):663-70. PubMed ID: 23419084 [TBL] [Abstract][Full Text] [Related]
32. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth. Minton J; Janney C; Akbarzadeh R; Focke C; Subramanian A; Smith T; McKinney J; Liu J; Schmitz J; James PF; Yousefi AM J Biomater Sci Polym Ed; 2014; 25(16):1856-74. PubMed ID: 25178801 [TBL] [Abstract][Full Text] [Related]
33. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. Kim HW; Knowles JC; Kim HE J Mater Sci Mater Med; 2005 Mar; 16(3):189-95. PubMed ID: 15744609 [TBL] [Abstract][Full Text] [Related]
34. Preparation of hydroxyapatite porous scaffold from a 'coral-like' synthetic inorganic precursor for use as a bone substitute and a drug delivery vehicle. Mohan N; Palangadan R; Fernandez FB; Varma H Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():329-337. PubMed ID: 30184757 [TBL] [Abstract][Full Text] [Related]
35. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design. Arora A; Kothari A; Katti DS J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472 [TBL] [Abstract][Full Text] [Related]
36. [Fabrication of a novel cartilage acellular matrix scaffold for cartilage tissue engineering]. Yang Q; Peng J; Lu S; Sun M; Huang J; Zhang L; Xu W; Zhao B; Sui X; Yao J; Yuan M Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Mar; 22(3):359-63. PubMed ID: 18396722 [TBL] [Abstract][Full Text] [Related]
37. Low-pressure foaming: a novel method for the fabrication of porous scaffolds for tissue engineering. Chung EJ; Sugimoto M; Koh JL; Ameer GA Tissue Eng Part C Methods; 2012 Feb; 18(2):113-21. PubMed ID: 21933018 [TBL] [Abstract][Full Text] [Related]
38. Fabrication of novel Si-doped hydroxyapatite/gelatine scaffolds by rapid prototyping for drug delivery and bone regeneration. Martínez-Vázquez FJ; Cabañas MV; Paris JL; Lozano D; Vallet-Regí M Acta Biomater; 2015 Mar; 15():200-9. PubMed ID: 25560614 [TBL] [Abstract][Full Text] [Related]
39. Photocurable high internal phase emulsions (HIPEs) containing hydroxyapatite for additive manufacture of tissue engineering scaffolds with multi-scale porosity. Wang AJ; Paterson T; Owen R; Sherborne C; Dugan J; Li JM; Claeyssens F Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():51-58. PubMed ID: 27287098 [TBL] [Abstract][Full Text] [Related]
40. Fabrication and characterization of waterborne biodegradable polyurethanes 3-dimensional porous scaffolds for vascular tissue engineering. Jiang X; Yu F; Wang Z; Li J; Tan H; Ding M; Fu Q J Biomater Sci Polym Ed; 2010; 21(12):1637-52. PubMed ID: 20537246 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]