These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29065687)

  • 1. Nonenzymatic Sensor for Lactate Detection in Human Sweat.
    Zaryanov NV; Nikitina VN; Karpova EV; Karyakina EE; Karyakin AA
    Anal Chem; 2017 Nov; 89(21):11198-11202. PubMed ID: 29065687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection.
    Martín A; Kim J; Kurniawan JF; Sempionatto JR; Moreto JR; Tang G; Campbell AS; Shin A; Lee MY; Liu X; Wang J
    ACS Sens; 2017 Dec; 2(12):1860-1868. PubMed ID: 29152973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective Nonenzymatic Amperometric Detection of Lactic Acid in Human Sweat Utilizing a Multi-Walled Carbon Nanotube (MWCNT)-Polypyrrole Core-Shell Nanowire.
    Choi YM; Lim H; Lee HN; Park YM; Park JS; Kim HJ
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32872302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fiber organic electrochemical transistors based on multi-walled carbon nanotube and polypyrrole composites for noninvasive lactate sensing.
    Zhang Y; Wang Y; Qing X; Wang Y; Zhong W; Wang W; Chen Y; Liu Q; Li M; Wang D
    Anal Bioanal Chem; 2020 Nov; 412(27):7515-7524. PubMed ID: 32862271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat.
    Liu YL; Liu R; Qin Y; Qiu QF; Chen Z; Cheng SB; Huang WH
    Anal Chem; 2018 Nov; 90(21):13081-13087. PubMed ID: 30272442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of lactate in human sweat via surface-modified, screen-printed carbon electrodes.
    Kumar N; Lin YJ; Huang YC; Liao YT; Lin SP
    Talanta; 2023 Dec; 265():124888. PubMed ID: 37393714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(3-aminophenylboronic acid)-functionalized carbon nanotubes-based chemiresistive sensors for detection of sugars.
    Badhulika S; Tlili C; Mulchandani A
    Analyst; 2014 Jun; 139(12):3077-82. PubMed ID: 24776682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A molecularly imprinted electrochemical microneedle sensor for multiplexed metabolites detection in human sweat.
    Mugo SM; Robertson SV; Lu W
    Talanta; 2023 Jul; 259():124531. PubMed ID: 37080073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A flexible electrochemical biosensor based on functionalized poly(3,4-ethylenedioxythiophene) film to detect lactate in sweat of the human body.
    Zhu C; Xu Y; Chen Q; Zhao H; Gao B; Zhang T
    J Colloid Interface Sci; 2022 Jul; 617():454-462. PubMed ID: 35290803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical preparation of surface molecularly imprinted poly(3-aminophenylboronic acid)/MWCNTs nanocomposite for sensitive sensing of epinephrine.
    Zhang J; Guo XT; Zhou JP; Liu GZ; Zhang SY
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():696-704. PubMed ID: 30033304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrene-Appended Boronic Acids on Graphene Foam Electrodes Provide Quantum Capacitance-Based Molecular Sensors for Lactate.
    Wikeley SM; Przybylowski J; Gardiner JE; James TD; Fletcher PJ; Isaacs MA; Lozano-Sanchez P; Caffio M; Marken F
    ACS Sens; 2024 Mar; 9(3):1565-1574. PubMed ID: 38447101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potentiometric sensor for non invasive lactate determination in human sweat.
    Onor M; Gufoni S; Lomonaco T; Ghimenti S; Salvo P; Sorrentino F; Bramanti E
    Anal Chim Acta; 2017 Oct; 989():80-87. PubMed ID: 28915945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-Enzymatic Impedimetric Sensor Based on 3-Aminophenylboronic Acid Functionalized Screen-Printed Carbon Electrode for Highly Sensitive Glucose Detection.
    Dorledo de Faria RA; Iden H; Heneine LGD; Matencio T; Messaddeq Y
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30970595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AuNP/Cu-TCPP(Fe) metal-organic framework nanofilm: a paper-based electrochemical sensor for non-invasive detection of lactate in sweat.
    Ji G; Zhu W; Jia X; Ji S; Han D; Gao Z; Liu H; Wang Y; Han T
    Nanoscale; 2023 Mar; 15(10):5023-5035. PubMed ID: 36790132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable Sensor System for Detection of Lactate in Sweat.
    Currano LJ; Sage FC; Hagedon M; Hamilton L; Patrone J; Gerasopoulos K
    Sci Rep; 2018 Oct; 8(1):15890. PubMed ID: 30367078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disposable amperometric biosensor based on lactate oxidase immobilised on platinum nanoparticle-decorated carbon nanofiber and poly(diallyldimethylammonium chloride) films.
    Lamas-Ardisana PJ; Loaiza OA; Añorga L; Jubete E; Borghei M; Ruiz V; Ochoteco E; Cabañero G; Grande HJ
    Biosens Bioelectron; 2014 Jun; 56():345-51. PubMed ID: 24534552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration.
    Jia W; Bandodkar AJ; Valdés-Ramírez G; Windmiller JR; Yang Z; Ramírez J; Chan G; Wang J
    Anal Chem; 2013 Jul; 85(14):6553-60. PubMed ID: 23815621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bimetallic Fe/Co-MOF dispersed in a PVA/chitosan multi-matrix hydrogel as a flexible sensor for the detection of lactic acid in sweat samples.
    Mukundan G; Ravipati M; Badhulika S
    Mikrochim Acta; 2024 Sep; 191(10):614. PubMed ID: 39305317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flex-GO (Flexible graphene oxide) sensor for electrochemical monitoring lactate in low-volume passive perspired human sweat.
    Lin KC; Muthukumar S; Prasad S
    Talanta; 2020 Jul; 214():120810. PubMed ID: 32278429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A selective glucose sensor based on direct oxidation on a bimetal catalyst with a molecular imprinted polymer.
    Cho SJ; Noh HB; Won MS; Cho CH; Kim KB; Shim YB
    Biosens Bioelectron; 2018 Jan; 99():471-478. PubMed ID: 28822313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.