BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 29065731)

  • 1. Optimising the effect of noise reduction algorithm ClearVoice in cochlear implant users by increasing the maximum comfort levels.
    Dingemanse JG; Goedegebure A
    Int J Audiol; 2018 Mar; 57(3):230-235. PubMed ID: 29065731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Noise Reduction Algorithm ClearVoice in Cochlear Implant Processing: Effects on Noise Tolerance and Speech Intelligibility in Noise in Relation to Spectral Resolution.
    Dingemanse JG; Goedegebure A
    Ear Hear; 2015; 36(3):357-67. PubMed ID: 25479412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiologically-inspired model reproducing the speech intelligibility benefit in cochlear implant listeners with residual acoustic hearing.
    Zamaninezhad L; Hohmann V; Büchner A; Schädler MR; Jürgens T
    Hear Res; 2017 Feb; 344():50-61. PubMed ID: 27838372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral contrast enhancement improves speech intelligibility in noise for cochlear implants.
    Nogueira W; Rode T; Büchner A
    J Acoust Soc Am; 2016 Feb; 139(2):728-39. PubMed ID: 26936556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of a transient noise reduction algorithm on speech intelligibility in noise, noise tolerance and perceived annoyance in cochlear implant users.
    Dingemanse JG; Vroegop JL; Goedegebure A
    Int J Audiol; 2018 May; 57(5):360-369. PubMed ID: 29334269
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clinical outcomes with the Kanso™ off-the-ear cochlear implant sound processor.
    Mauger SJ; Jones M; Nel E; Del Dot J
    Int J Audiol; 2017 Apr; 56(4):267-276. PubMed ID: 28067077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Masking release with changing fundamental frequency: Electric acoustic stimulation resembles normal hearing subjects.
    Auinger AB; Riss D; Liepins R; Rader T; Keck T; Keintzel T; Kaider A; Baumgartner WD; Gstoettner W; Arnoldner C
    Hear Res; 2017 Jul; 350():226-234. PubMed ID: 28527538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Speech enhancement based on neural networks improves speech intelligibility in noise for cochlear implant users.
    Goehring T; Bolner F; Monaghan JJ; van Dijk B; Zarowski A; Bleeck S
    Hear Res; 2017 Feb; 344():183-194. PubMed ID: 27913315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adjustments of the amplitude mapping function: Sensitivity of cochlear implant users and effects on subjective preference and speech recognition.
    Theelen-van den Hoek FL; Boymans M; van Dijk B; Dreschler WA
    Int J Audiol; 2016 Nov; 55(11):674-87. PubMed ID: 27447758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of cochlear's SCAN and wireless microphones to improve speech understanding in noise with the Nucleus6® CP900 processor.
    De Ceulaer G; Pascoal D; Vanpoucke F; Govaerts PJ
    Int J Audiol; 2017 Nov; 56(11):837-843. PubMed ID: 28695749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of Speech Recognition of Cochlear Implant Recipients Using Adaptive, Digital Remote Microphone Technology and a Speech Enhancement Sound Processing Algorithm.
    Wolfe J; Morais M; Schafer E; Agrawal S; Koch D
    J Am Acad Audiol; 2015 May; 26(5):502-508. PubMed ID: 26055839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A directional remote-microphone for bimodal cochlear implant recipients.
    Vroegop JL; Homans NC; Goedegebure A; van der Schroeff MP
    Int J Audiol; 2018 Nov; 57(11):858-863. PubMed ID: 30261771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-microphone spatial filtering improves speech reception for cochlear-implant users in reverberant conditions with multiple noise sources.
    Goldsworthy RL
    Trends Hear; 2014 Oct; 18():. PubMed ID: 25330772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric and acoustic harmonic integration predicts speech-in-noise performance in hybrid cochlear implant users.
    Bonnard D; Schwalje A; Gantz B; Choi I
    Hear Res; 2018 Sep; 367():223-230. PubMed ID: 29980380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Avoiding disconnection: An evaluation of telephone options for cochlear implant users.
    Marcrum SC; Picou EM; Steffens T
    Int J Audiol; 2017 Mar; 56(3):186-193. PubMed ID: 27809627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pulse-spreading harmonic complex as an alternative carrier for vocoder simulations of cochlear implants.
    Mesnildrey Q; Hilkhuysen G; Macherey O
    J Acoust Soc Am; 2016 Feb; 139(2):986-91. PubMed ID: 26936577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting the speech reception threshold of cochlear implant listeners using an envelope-correlation based measure.
    Yousefian N; Loizou PC
    J Acoust Soc Am; 2012 Nov; 132(5):3399-405. PubMed ID: 23145620
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system.
    Holden LK; Reeder RM; Firszt JB; Finley CC
    Int J Audiol; 2011 Apr; 50(4):255-69. PubMed ID: 21275500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A beamformer post-filter for cochlear implant noise reduction.
    Hersbach AA; Grayden DB; Fallon JB; McDermott HJ
    J Acoust Soc Am; 2013 Apr; 133(4):2412-20. PubMed ID: 23556606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Factors constraining the benefit to speech understanding of combining information from low-frequency hearing and a cochlear implant.
    Dorman MF; Cook S; Spahr A; Zhang T; Loiselle L; Schramm D; Whittingham J; Gifford R
    Hear Res; 2015 Apr; 322():107-11. PubMed ID: 25285624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.