BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 29065774)

  • 1. State-of-the-art robotic devices for ankle rehabilitation: Mechanism and control review.
    Hussain S; Jamwal PK; Ghayesh MH
    Proc Inst Mech Eng H; 2017 Dec; 231(12):1224-1234. PubMed ID: 29065774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic orthoses for gait rehabilitation: An overview of mechanical design and control strategies.
    Jamwal PK; Hussain S; Ghayesh MH
    Proc Inst Mech Eng H; 2020 May; 234(5):444-457. PubMed ID: 31916511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. State-of-the-art robotic gait rehabilitation orthoses: design and control aspects.
    Hussain S
    NeuroRehabilitation; 2014; 35(4):701-9. PubMed ID: 25318783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robot-assisted ankle rehabilitation: a review.
    Alvarez-Perez MG; Garcia-Murillo MA; Cervantes-Sánchez JJ
    Disabil Rehabil Assist Technol; 2020 May; 15(4):394-408. PubMed ID: 30856032
    [No Abstract]   [Full Text] [Related]  

  • 5. Robot Assisted Ankle Neuro-Rehabilitation: State of the art and Future Challenges.
    Hussain S; Jamwal PK; Vliet PV; Brown NAT
    Expert Rev Neurother; 2021 Jan; 21(1):111-121. PubMed ID: 33198522
    [No Abstract]   [Full Text] [Related]  

  • 6. State of the art in parallel ankle rehabilitation robot: a systematic review.
    Dong M; Zhou Y; Li J; Rong X; Fan W; Zhou X; Kong Y
    J Neuroeng Rehabil; 2021 Mar; 18(1):52. PubMed ID: 33743757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on the mechanical design elements of ankle rehabilitation robot.
    Khalid YM; Gouwanda D; Parasuraman S
    Proc Inst Mech Eng H; 2015 Jun; 229(6):452-63. PubMed ID: 25979442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review on design and control aspects of ankle rehabilitation robots.
    Jamwal PK; Hussain S; Xie SQ
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a robotic gait trainer using spring over muscle actuators for ankle stroke rehabilitation.
    Bharadwaj K; Sugar TG; Koeneman JB; Koeneman EJ
    J Biomech Eng; 2005 Nov; 127(6):1009-13. PubMed ID: 16438241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single joint robotic orthoses for gait rehabilitation: An educational technical review.
    Hussain S; Jamwal PK; Ghayesh MH
    J Rehabil Med; 2016 Apr; 48(4):333-8. PubMed ID: 26936800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An intrinsically compliant robotic orthosis for treadmill training.
    Hussain S; Xie SQ; Jamwal PK; Parsons J
    Med Eng Phys; 2012 Dec; 34(10):1448-53. PubMed ID: 22421099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robot assisted treadmill training: mechanisms and training strategies.
    Hussain S; Xie SQ; Liu G
    Med Eng Phys; 2011 Jun; 33(5):527-33. PubMed ID: 21216650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An advanced rehabilitation robotic system for augmenting healthcare.
    Hu J; Lim YJ; Ding Y; Paluska D; Solochek A; Laffery D; Bonato P; Marchessault R
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2073-6. PubMed ID: 22254745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robotic orthoses for body weight-supported treadmill training.
    Winchester P; Querry R
    Phys Med Rehabil Clin N Am; 2006 Feb; 17(1):159-72. PubMed ID: 16517349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of lower extremity assistive robotic exoskeletons in rehabilitation therapy.
    Chen G; Chan CK; Guo Z; Yu H
    Crit Rev Biomed Eng; 2013; 41(4-5):343-63. PubMed ID: 24941413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a New Robotic Ankle Rehabilitation Platform for Hemiplegic Patients after Stroke.
    Liu Q; Wang C; Long JJ; Sun T; Duan L; Zhang X; Zhang B; Shen Y; Shang W; Lin Z; Wang Y; Xia J; Wei J; Li W; Wu Z
    J Healthc Eng; 2018; 2018():3867243. PubMed ID: 29736231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An intrinsically safe mechanism for physically coupling humans with robots.
    O'Neill G; Patel H; Artemiadis P
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650510. PubMed ID: 24187325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent trends for practical rehabilitation robotics, current challenges and the future.
    Yakub F; Md Khudzari AZ; Mori Y
    Int J Rehabil Res; 2014 Mar; 37(1):9-21. PubMed ID: 24126254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards compliant and wearable robotic orthoses: A review of current and emerging actuator technologies.
    Veale AJ; Xie SQ
    Med Eng Phys; 2016 Apr; 38(4):317-25. PubMed ID: 26923385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.