BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 29066302)

  • 1. De novo transcriptomic analysis during Lentinula edodes fruiting body growth.
    Wang Y; Zeng X; Liu W
    Gene; 2018 Jan; 641():326-334. PubMed ID: 29066302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes.
    Song HY; Kim DH; Kim JM
    Sci Rep; 2018 Jun; 8(1):8983. PubMed ID: 29895888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cataloging and profiling genes expressed in Lentinula edodes fruiting body by massive cDNA pyrosequencing and LongSAGE.
    Chum WW; Kwan HS; Au CH; Kwok IS; Fung YW
    Fungal Genet Biol; 2011 Apr; 48(4):359-69. PubMed ID: 21281728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lentinula edodes Genome Survey and Postharvest Transcriptome Analysis.
    Sakamoto Y; Nakade K; Sato S; Yoshida K; Miyazaki K; Natsume S; Konno N
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314725
    [No Abstract]   [Full Text] [Related]  

  • 5. De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing.
    Zhong M; Liu B; Wang X; Liu L; Lun Y; Li X; Ning A; Cao J; Huang M
    Biochem Biophys Res Commun; 2013 Feb; 431(1):111-5. PubMed ID: 23266612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptome analysis of abnormal cap and healthy fruiting bodies of the edible mushroom Lentinula edodes.
    Yan D; Gao Q; Rong C; Liu Y; Song S; Yu Q; Zhou K; Liao Y
    Fungal Genet Biol; 2021 Nov; 156():103614. PubMed ID: 34400332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning of developmentally specific genes by representational difference analysis during the fruiting body formation in the basidiomycete Lentinula edodes.
    Miyazaki Y; Nakamura M; Babasaki K
    Fungal Genet Biol; 2005 Jun; 42(6):493-505. PubMed ID: 15893253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus.
    Zhang J; Ren A; Chen H; Zhao M; Shi L; Chen M; Wang H; Feng Z
    PLoS One; 2015; 10(4):e0123025. PubMed ID: 25837428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative transcriptome analysis on candidate genes associated with fruiting body growth and development in
    Ke S; Ding L; Niu X; Shan H; Song L; Xi Y; Feng J; Wei S; Liang Q
    PeerJ; 2023; 11():e16288. PubMed ID: 37904843
    [No Abstract]   [Full Text] [Related]  

  • 10. Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes.
    Tang LH; Jian HH; Song CY; Bao DP; Shang XD; Wu DQ; Tan Q; Zhang XH
    Appl Microbiol Biotechnol; 2013 Jun; 97(11):4977-89. PubMed ID: 23624682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene expression studies of the dikaryotic mycelium and primordium of Lentinula edodes by serial analysis of gene expression.
    Chum WW; Ng KT; Shih RS; Au CH; Kwan HS
    Mycol Res; 2008 Aug; 112(Pt 8):950-64. PubMed ID: 18555678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris.
    Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y
    BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes.
    Gong WB; Li L; Zhou Y; Bian YB; Kwan HS; Cheung MK; Xiao Y
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5437-52. PubMed ID: 26875873
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of genes associated with autolysis of Coprinus comatus.
    Guo HB; Zhang ZF; Wang JQ; Wang SY; Yang JK; Xing XY; Qi XJ; Yu XD
    Sci Rep; 2022 Feb; 12(1):2476. PubMed ID: 35169137
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita.
    Wang M; Gu B; Huang J; Jiang S; Chen Y; Yin Y; Pan Y; Yu G; Li Y; Wong BH; Liang Y; Sun H
    PLoS One; 2013; 8(2):e56686. PubMed ID: 23418592
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome.
    Yu GJ; Wang M; Huang J; Yin YL; Chen YJ; Jiang S; Jin YX; Lan XQ; Wong BH; Liang Y; Sun H
    PLoS One; 2012; 7(8):e44031. PubMed ID: 22952861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulative effects of light and a temperature downshift on transcriptional expressions of developmentally regulated genes in the initial stages of fruiting-body formation of the basidiomycetous mushroom Lentinula edodes.
    Nakazawa T; Miyazaki Y; Kaneko S; Shishido K
    FEMS Microbiol Lett; 2008 Dec; 289(1):67-71. PubMed ID: 19054095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isolation and transcript analysis of two-component histidine kinase gene Le.nik1 in Shiitake mushroom, Lentinula edodes.
    Szeto CY; Wong QW; Leung GS; Kwan HS
    Mycol Res; 2008 Jan; 112(Pt 1):108-16. PubMed ID: 18234485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Near-gapless genome and transcriptome analyses provide insights into fruiting body development in Lentinula edodes.
    Shen N; Xie H; Liu K; Li X; Wang L; Deng Y; Chen L; Bian Y; Xiao Y
    Int J Biol Macromol; 2024 Apr; 263(Pt 2):130610. PubMed ID: 38447851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An endo-β-1,6-glucanase involved in Lentinula edodes fruiting body autolysis.
    Konno N; Sakamoto Y
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1365-73. PubMed ID: 21523473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.