These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
501 related articles for article (PubMed ID: 29066302)
1. De novo transcriptomic analysis during Lentinula edodes fruiting body growth. Wang Y; Zeng X; Liu W Gene; 2018 Jan; 641():326-334. PubMed ID: 29066302 [TBL] [Abstract][Full Text] [Related]
2. Comparative transcriptome analysis of dikaryotic mycelia and mature fruiting bodies in the edible mushroom Lentinula edodes. Song HY; Kim DH; Kim JM Sci Rep; 2018 Jun; 8(1):8983. PubMed ID: 29895888 [TBL] [Abstract][Full Text] [Related]
3. Cataloging and profiling genes expressed in Lentinula edodes fruiting body by massive cDNA pyrosequencing and LongSAGE. Chum WW; Kwan HS; Au CH; Kwok IS; Fung YW Fungal Genet Biol; 2011 Apr; 48(4):359-69. PubMed ID: 21281728 [TBL] [Abstract][Full Text] [Related]
4. Lentinula edodes Genome Survey and Postharvest Transcriptome Analysis. Sakamoto Y; Nakade K; Sato S; Yoshida K; Miyazaki K; Natsume S; Konno N Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28314725 [No Abstract] [Full Text] [Related]
5. De novo characterization of Lentinula edodes C(91-3) transcriptome by deep Solexa sequencing. Zhong M; Liu B; Wang X; Liu L; Lun Y; Li X; Ning A; Cao J; Huang M Biochem Biophys Res Commun; 2013 Feb; 431(1):111-5. PubMed ID: 23266612 [TBL] [Abstract][Full Text] [Related]
6. Comparative transcriptome analysis of abnormal cap and healthy fruiting bodies of the edible mushroom Lentinula edodes. Yan D; Gao Q; Rong C; Liu Y; Song S; Yu Q; Zhou K; Liao Y Fungal Genet Biol; 2021 Nov; 156():103614. PubMed ID: 34400332 [TBL] [Abstract][Full Text] [Related]
7. Integrated transcriptome and metabolism unravel critical roles of carbon metabolism and oxidoreductase in mushroom with Korshinsk peashrub substrates. Zhao Y; Yao Y; Li H; Han Z; Ma X BMC Genomics; 2024 Aug; 25(1):763. PubMed ID: 39107700 [TBL] [Abstract][Full Text] [Related]
8. Molecular cloning of developmentally specific genes by representational difference analysis during the fruiting body formation in the basidiomycete Lentinula edodes. Miyazaki Y; Nakamura M; Babasaki K Fungal Genet Biol; 2005 Jun; 42(6):493-505. PubMed ID: 15893253 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptome analysis on candidate genes associated with fruiting body growth and development in Ke S; Ding L; Niu X; Shan H; Song L; Xi Y; Feng J; Wei S; Liang Q PeerJ; 2023; 11():e16288. PubMed ID: 37904843 [No Abstract] [Full Text] [Related]
10. Transcriptome analysis of candidate genes and signaling pathways associated with light-induced brown film formation in Lentinula edodes. Tang LH; Jian HH; Song CY; Bao DP; Shang XD; Wu DQ; Tan Q; Zhang XH Appl Microbiol Biotechnol; 2013 Jun; 97(11):4977-89. PubMed ID: 23624682 [TBL] [Abstract][Full Text] [Related]
11. Gene expression studies of the dikaryotic mycelium and primordium of Lentinula edodes by serial analysis of gene expression. Chum WW; Ng KT; Shih RS; Au CH; Kwan HS Mycol Res; 2008 Aug; 112(Pt 8):950-64. PubMed ID: 18555678 [TBL] [Abstract][Full Text] [Related]
12. De novo sequencing and comparative transcriptome analysis of the male and hermaphroditic flowers provide insights into the regulation of flower formation in andromonoecious taihangia rupestris. Li W; Zhang L; Ding Z; Wang G; Zhang Y; Gong H; Chang T; Zhang Y BMC Plant Biol; 2017 Feb; 17(1):54. PubMed ID: 28241786 [TBL] [Abstract][Full Text] [Related]
13. Genetic dissection of fruiting body-related traits using quantitative trait loci mapping in Lentinula edodes. Gong WB; Li L; Zhou Y; Bian YB; Kwan HS; Cheung MK; Xiao Y Appl Microbiol Biotechnol; 2016 Jun; 100(12):5437-52. PubMed ID: 26875873 [TBL] [Abstract][Full Text] [Related]
14. Transcriptome analysis of genes associated with autolysis of Coprinus comatus. Guo HB; Zhang ZF; Wang JQ; Wang SY; Yang JK; Xing XY; Qi XJ; Yu XD Sci Rep; 2022 Feb; 12(1):2476. PubMed ID: 35169137 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis and its application in identifying genes associated with fruiting body development in basidiomycete Hypsizygus marmoreus. Zhang J; Ren A; Chen H; Zhao M; Shi L; Chen M; Wang H; Feng Z PLoS One; 2015; 10(4):e0123025. PubMed ID: 25837428 [TBL] [Abstract][Full Text] [Related]
16. Transcriptome and proteome exploration to provide a resource for the study of Agrocybe aegerita. Wang M; Gu B; Huang J; Jiang S; Chen Y; Yin Y; Pan Y; Yu G; Li Y; Wong BH; Liang Y; Sun H PLoS One; 2013; 8(2):e56686. PubMed ID: 23418592 [TBL] [Abstract][Full Text] [Related]
17. Stimulative effects of light and a temperature downshift on transcriptional expressions of developmentally regulated genes in the initial stages of fruiting-body formation of the basidiomycetous mushroom Lentinula edodes. Nakazawa T; Miyazaki Y; Kaneko S; Shishido K FEMS Microbiol Lett; 2008 Dec; 289(1):67-71. PubMed ID: 19054095 [TBL] [Abstract][Full Text] [Related]
18. Isolation and transcript analysis of two-component histidine kinase gene Le.nik1 in Shiitake mushroom, Lentinula edodes. Szeto CY; Wong QW; Leung GS; Kwan HS Mycol Res; 2008 Jan; 112(Pt 1):108-16. PubMed ID: 18234485 [TBL] [Abstract][Full Text] [Related]
19. Near-gapless genome and transcriptome analyses provide insights into fruiting body development in Lentinula edodes. Shen N; Xie H; Liu K; Li X; Wang L; Deng Y; Chen L; Bian Y; Xiao Y Int J Biol Macromol; 2024 Apr; 263(Pt 2):130610. PubMed ID: 38447851 [TBL] [Abstract][Full Text] [Related]
20. Deep insight into the Ganoderma lucidum by comprehensive analysis of its transcriptome. Yu GJ; Wang M; Huang J; Yin YL; Chen YJ; Jiang S; Jin YX; Lan XQ; Wong BH; Liang Y; Sun H PLoS One; 2012; 7(8):e44031. PubMed ID: 22952861 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]