These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 29066396)

  • 1. Serial correlations in single-subject fMRI with sub-second TR.
    Bollmann S; Puckett AM; Cunnington R; Barth M
    Neuroimage; 2018 Feb; 166():152-166. PubMed ID: 29066396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based physiological noise removal in fast fMRI.
    Agrawal U; Brown EN; Lewis LD
    Neuroimage; 2020 Jan; 205():116231. PubMed ID: 31589991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the analysis of rapidly sampled fMRI data.
    Chen JE; Polimeni JR; Bollmann S; Glover GH
    Neuroimage; 2019 Mar; 188():807-820. PubMed ID: 30735828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal repetition time reduction for single subject event-related functional magnetic resonance imaging.
    McDowell AR; Carmichael DW
    Magn Reson Med; 2019 Mar; 81(3):1890-1897. PubMed ID: 30230635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospective motion correction in functional MRI using simultaneous multislice imaging and multislice-to-volume image registration.
    Hoinkiss DC; Erhard P; Breutigam NJ; von Samson-Himmelstjerna F; Günther M; Porter DA
    Neuroimage; 2019 Oct; 200():159-173. PubMed ID: 31226496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of temporal resolution and serial autocorrelations in event-related functional MRI.
    Sahib AK; Mathiak K; Erb M; Elshahabi A; Klamer S; Scheffler K; Focke NK; Ethofer T
    Magn Reson Med; 2016 Dec; 76(6):1805-1813. PubMed ID: 26749161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accurate modeling of temporal correlations in rapidly sampled fMRI time series.
    Corbin N; Todd N; Friston KJ; Callaghan MF
    Hum Brain Mapp; 2018 Oct; 39(10):3884-3897. PubMed ID: 29885101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of denoising pipelines in high temporal resolution task-based functional magnetic resonance imaging data.
    Mayer AR; Ling JM; Dodd AB; Shaff NA; Wertz CJ; Hanlon FM
    Hum Brain Mapp; 2019 Sep; 40(13):3843-3859. PubMed ID: 31119818
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved autoregressive model for correction of noise serial correlation in fast fMRI.
    Luo Q; Misaki M; Mulyana B; Wong CK; Bodurka J
    Magn Reson Med; 2020 Sep; 84(3):1293-1305. PubMed ID: 32060948
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iterative Data-adaptive Autoregressive (IDAR) whitening procedure for long and short TR fMRI.
    Yue K; Webster J; Grabowski T; Shojaie A; Jahanian H
    Front Neurosci; 2024; 18():1381722. PubMed ID: 39156630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential pitfalls when denoising resting state fMRI data using nuisance regression.
    Bright MG; Tench CR; Murphy K
    Neuroimage; 2017 Jul; 154():159-168. PubMed ID: 28025128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive evaluation of increasing temporal resolution with multiband-accelerated protocols and effects on statistical outcome measures in fMRI.
    Demetriou L; Kowalczyk OS; Tyson G; Bello T; Newbould RD; Wall MB
    Neuroimage; 2018 Aug; 176():404-416. PubMed ID: 29738911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate autocorrelation modeling substantially improves fMRI reliability.
    Olszowy W; Aston J; Rua C; Williams GB
    Nat Commun; 2019 Dec; 10(1):1220. PubMed ID: 30899012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An improved model of motion-related signal changes in fMRI.
    Patriat R; Reynolds RC; Birn RM
    Neuroimage; 2017 Jan; 144(Pt A):74-82. PubMed ID: 27570108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Activation and Hemodynamic Response Function of Olfactory fMRI Using Simultaneous Multislice with Reduced TR Acquisition.
    Chen H; Yin J; He C; Wu Y; Long M; Liu G; Ni H; Jin H; Liu Y
    Biomed Res Int; 2021; 2021():9965756. PubMed ID: 35005024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiological noise correction using ECG-derived respiratory signals for enhanced mapping of spontaneous neuronal activity with simultaneous EEG-fMRI.
    Abreu R; Nunes S; Leal A; Figueiredo P
    Neuroimage; 2017 Jul; 154():115-127. PubMed ID: 27530551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LEICA: Laplacian eigenmaps for group ICA decomposition of fMRI data.
    Liu C; JaJa J; Pessoa L
    Neuroimage; 2018 Apr; 169():363-373. PubMed ID: 29246846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacting the effect of fMRI noise through hardware and acquisition choices - Implications for controlling false positive rates.
    Wald LL; Polimeni JR
    Neuroimage; 2017 Jul; 154():15-22. PubMed ID: 28039092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fully Bayesian approach to the parcel-based detection-estimation of brain activity in fMRI.
    Makni S; Idier J; Vincent T; Thirion B; Dehaene-Lambertz G; Ciuciu P
    Neuroimage; 2008 Jul; 41(3):941-69. PubMed ID: 18439839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Colored noise and computational inference in neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet domains.
    Bullmore E; Long C; Suckling J; Fadili J; Calvert G; Zelaya F; Carpenter TA; Brammer M
    Hum Brain Mapp; 2001 Feb; 12(2):61-78. PubMed ID: 11169871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.