BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29066617)

  • 21. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.
    Wu D; Wang D; Zhang MQ; Gu J
    BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identifying molecular subtypes in human colon cancer using gene expression and DNA methylation microarray data.
    Ren Z; Wang W; Li J
    Int J Oncol; 2016 Feb; 48(2):690-702. PubMed ID: 26647925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MethHC: a database of DNA methylation and gene expression in human cancer.
    Huang WY; Hsu SD; Huang HY; Sun YM; Chou CH; Weng SL; Huang HD
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D856-61. PubMed ID: 25398901
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrating multiple omics data for the discovery of potential Beclin-1 interactions in breast cancer.
    Chen Y; Wang X; Wang G; Li Z; Wang J; Huang L; Qin Z; Yuan X; Cheng Z; Zhang S; Yin Y; He J
    Mol Biosyst; 2017 May; 13(5):991-999. PubMed ID: 28401970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A hierarchical clustering and data fusion approach for disease subtype discovery.
    Pfeifer B; Schimek MG
    J Biomed Inform; 2021 Jan; 113():103636. PubMed ID: 33271342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. MODEC: an unsupervised clustering method integrating omics data for identifying cancer subtypes.
    Zhang Y; Kiryu H
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36094092
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Integration of microRNA signatures of distinct mammary epithelial cell types with their gene expression and epigenetic portraits.
    Pal B; Chen Y; Bert A; Hu Y; Sheridan JM; Beck T; Shi W; Satterley K; Jamieson P; Goodall GJ; Lindeman GJ; Smyth GK; Visvader JE
    Breast Cancer Res; 2015 Jun; 17(1):85. PubMed ID: 26080807
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative and regularized principal component analysis of multiple sources of data.
    Liu B; Shen X; Pan W
    Stat Med; 2016 Jun; 35(13):2235-50. PubMed ID: 26756854
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Random Walk Based Cluster Ensemble Approach for Data Integration and Cancer Subtyping.
    Yang C; Wang YT; Zheng CH
    Genes (Basel); 2019 Jan; 10(1):. PubMed ID: 30669418
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subtyping of children with developmental dyslexia via bootstrap aggregated clustering and the gap statistic: comparison with the double-deficit hypothesis.
    King WM; Giess SA; Lombardino LJ
    Int J Lang Commun Disord; 2007; 42(1):77-95. PubMed ID: 17365087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Randomized maps for assessing the reliability of patients clusters in DNA microarray data analyses.
    Bertoni A; Valentini G
    Artif Intell Med; 2006 Jun; 37(2):85-109. PubMed ID: 16720093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrative Analysis of Multi-omics Data for Discovery and Functional Studies of Complex Human Diseases.
    Sun YV; Hu YJ
    Adv Genet; 2016; 93():147-90. PubMed ID: 26915271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene expression analysis in clear cell renal cell carcinoma using gene set enrichment analysis for biostatistical management.
    Maruschke M; Reuter D; Koczan D; Hakenberg OW; Thiesen HJ
    BJU Int; 2011 Jul; 108(2 Pt 2):E29-35. PubMed ID: 21435154
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of the Prognostic Utility of the Diverse Molecular Data among lncRNA, DNA Methylation, microRNA, and mRNA across Five Human Cancers.
    Xu L; Fengji L; Changning L; Liangcai Z; Yinghui L; Yu L; Shanguang C; Jianghui X
    PLoS One; 2015; 10(11):e0142433. PubMed ID: 26606135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Machine-Learning Tool Concurrently Models Single Omics and Phenome Data for Functional Subtyping and Personalized Cancer Medicine.
    Nyamundanda G; Eason K; Guinney J; Lord CJ; Sadanandam A
    Cancers (Basel); 2020 Sep; 12(10):. PubMed ID: 33007815
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biologically inspired survival analysis based on integrating gene expression as mediator with genomic variants.
    Youssef I; Clarke R; Shih IeM; Wang Y; Yu G
    Comput Biol Med; 2016 Oct; 77():231-9. PubMed ID: 27619193
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Patient subgrouping with distinct survival rates via integration of multiomics data on a Grassmann manifold.
    Alfatemi A; Peng H; Rong W; Zhang B; Cai H
    BMC Med Inform Decis Mak; 2022 Jul; 22(1):190. PubMed ID: 35870923
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NETBAGs: a network-based clustering approach with gene signatures for cancer subtyping analysis.
    Wu L; Liu Z; Xu J; Chen M; Fang H; Tong W; Xiao W
    Biomark Med; 2015; 9(11):1053-65. PubMed ID: 26501477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genome-wide DNA methylation analysis of lung carcinoma reveals one neuroendocrine and four adenocarcinoma epitypes associated with patient outcome.
    Karlsson A; Jönsson M; Lauss M; Brunnström H; Jönsson P; Borg Å; Jönsson G; Ringnér M; Planck M; Staaf J
    Clin Cancer Res; 2014 Dec; 20(23):6127-40. PubMed ID: 25278450
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.