These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 29066619)

  • 21. ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro.
    Lackner LL; Raskin DM; de Boer PA
    J Bacteriol; 2003 Feb; 185(3):735-49. PubMed ID: 12533449
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli.
    Hsieh CW; Lin TY; Lai HM; Lin CC; Hsieh TS; Shih YL
    Mol Microbiol; 2010 Jan; 75(2):499-512. PubMed ID: 20025670
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topological regulation of cell division in E. coli. spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid.
    Hu Z; Lutkenhaus J
    Mol Cell; 2001 Jun; 7(6):1337-43. PubMed ID: 11430835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The plastid division protein AtMinD1 is a Ca2+-ATPase stimulated by AtMinE1.
    Aldridge C; Møller SG
    J Biol Chem; 2005 Sep; 280(36):31673-8. PubMed ID: 16014621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MinE conformational switching confers robustness on self-organized Min protein patterns.
    Denk J; Kretschmer S; Halatek J; Hartl C; Schwille P; Frey E
    Proc Natl Acad Sci U S A; 2018 May; 115(18):4553-4558. PubMed ID: 29666276
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of C-terminal structure of MinC and its implication in evolution of bacterial cell division.
    Yang S; Shen Q; Wang S; Song C; Lei Z; Han S; Zhang X; Zheng J; Jia Z
    Sci Rep; 2017 Aug; 7(1):7627. PubMed ID: 28790446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Min protein patterns emerge from rapid rebinding and membrane interaction of MinE.
    Loose M; Fischer-Friedrich E; Herold C; Kruse K; Schwille P
    Nat Struct Mol Biol; 2011 May; 18(5):577-83. PubMed ID: 21516096
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MinD and MinE interact with anionic phospholipids and regulate division plane formation in Escherichia coli.
    Renner LD; Weibel DB
    J Biol Chem; 2012 Nov; 287(46):38835-44. PubMed ID: 23012351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE.
    Hu Z; Lutkenhaus J
    Mol Microbiol; 1999 Oct; 34(1):82-90. PubMed ID: 10540287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N terminus determinants of MinC from Neisseria gonorrhoeae mediate interaction with FtsZ but do not affect interaction with MinD or homodimerization.
    Greco-Stewart V; Ramirez-Arcos S; Liao M; Dillon JR
    Arch Microbiol; 2007 Jun; 187(6):451-8. PubMed ID: 17287984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The switch I and II regions of MinD are required for binding and activating MinC.
    Zhou H; Lutkenhaus J
    J Bacteriol; 2004 Mar; 186(5):1546-55. PubMed ID: 14973039
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The dimerization and topological specificity functions of MinE reside in a structurally autonomous C-terminal domain.
    King GF; Rowland SL; Pan B; Mackay JP; Mullen GP; Rothfield LI
    Mol Microbiol; 1999 Feb; 31(4):1161-9. PubMed ID: 10096083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Septal membrane localization by C-terminal amphipathic α-helices of MinD in Bacillus subtilis mutant cells lacking MinJ or DivIVA.
    Ishikawa K; Matsuoka S; Hara H; Matsumoto K
    Genes Genet Syst; 2017 Oct; 92(2):81-98. PubMed ID: 28674273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic localization cycle of the cell division regulator MinE in Escherichia coli.
    Hale CA; Meinhardt H; de Boer PA
    EMBO J; 2001 Apr; 20(7):1563-72. PubMed ID: 11285221
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts.
    Szeto TH; Rowland SL; Rothfield LI; King GF
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15693-8. PubMed ID: 12424340
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for the topological specificity function of MinE.
    King GF; Shih YL; Maciejewski MW; Bains NP; Pan B; Rowland SL; Mullen GP; Rothfield LI
    Nat Struct Biol; 2000 Nov; 7(11):1013-7. PubMed ID: 11062554
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of MinD-membrane association in Min protein interactions.
    Taghbalout A; Ma L; Rothfield L
    J Bacteriol; 2006 Apr; 188(8):2993-3001. PubMed ID: 16585760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mapping the MinE site involved in interaction with the MinD division site selection protein of Escherichia coli.
    Ma LY; King G; Rothfield L
    J Bacteriol; 2003 Aug; 185(16):4948-55. PubMed ID: 12897015
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of MinE on the membrane underlies formation of the MinE ring to sustain function of the Escherichia coli Min system.
    Zheng M; Chiang YL; Lee HL; Kong LR; Hsu ST; Hwang IS; Rothfield LI; Shih YL
    J Biol Chem; 2014 Aug; 289(31):21252-66. PubMed ID: 24914211
    [TBL] [Abstract][Full Text] [Related]  

  • 40. C-terminal eYFP fusion impairs
    Palanisamy N; Öztürk MA; Akmeriç EB; Di Ventura B
    Open Biol; 2020 May; 10(5):200010. PubMed ID: 32456552
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.