BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 29066778)

  • 1. Structural, physicochemical and dynamic features conserved within the aerolysin pore-forming toxin family.
    Cirauqui N; Abriata LA; van der Goot FG; Dal Peraro M
    Sci Rep; 2017 Oct; 7(1):13932. PubMed ID: 29066778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray and Cryo-electron Microscopy Structures of Monalysin Pore-forming Toxin Reveal Multimerization of the Pro-form.
    Leone P; Bebeacua C; Opota O; Kellenberger C; Klaholz B; Orlov I; Cambillau C; Lemaitre B; Roussel A
    J Biol Chem; 2015 May; 290(21):13191-201. PubMed ID: 25847242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism.
    Degiacomi MT; Iacovache I; Pernot L; Chami M; Kudryashev M; Stahlberg H; van der Goot FG; Dal Peraro M
    Nat Chem Biol; 2013 Oct; 9(10):623-9. PubMed ID: 23912165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Intermolecular π-Stacking Interaction Drives Conformational Changes Necessary to β-Barrel Formation in a Pore-Forming Toxin.
    Burns JR; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clostridial pore-forming toxins: powerful virulence factors.
    Popoff MR
    Anaerobe; 2014 Dec; 30():220-38. PubMed ID: 24952276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of BinB: a receptor binding component of the binary toxin from Lysinibacillus sphaericus.
    Srisucharitpanit K; Yao M; Promdonkoy B; Chimnaronk S; Tanaka I; Boonserm P
    Proteins; 2014 Oct; 82(10):2703-12. PubMed ID: 24975613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Structural Basis for a Transition State That Regulates Pore Formation in a Bacterial Toxin.
    Wade KR; Lawrence SL; Farrand AJ; Hotze EM; Kuiper MJ; Gorman MA; Christie MP; Panjikar S; Morton CJ; Parker MW; Tweten RK
    mBio; 2019 Apr; 10(2):. PubMed ID: 31015325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane insertion of α-xenorhabdolysin in near-atomic detail.
    Schubert E; Vetter IR; Prumbaum D; Penczek PA; Raunser S
    Elife; 2018 Jul; 7():. PubMed ID: 30010541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Taking Toll on Membranes: Curious Cases of Bacterial β-Barrel Pore-Forming Toxins.
    Mondal AK; Chattopadhyay K
    Biochemistry; 2020 Jan; 59(2):163-170. PubMed ID: 31608629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of pore formation by aerolysin-like proteins.
    Podobnik M; Kisovec M; Anderluh G
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryo-EM structure of aerolysin variants reveals a novel protein fold and the pore-formation process.
    Iacovache I; De Carlo S; Cirauqui N; Dal Peraro M; van der Goot FG; Zuber B
    Nat Commun; 2016 Jul; 7():12062. PubMed ID: 27405240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pore-forming activity of clostridial binary toxins.
    Knapp O; Benz R; Popoff MR
    Biochim Biophys Acta; 2016 Mar; 1858(3):512-25. PubMed ID: 26278641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of Cry51Aa1: A potential novel insecticidal aerolysin-type β-pore-forming toxin from Bacillus thuringiensis.
    Xu C; Chinte U; Chen L; Yao Q; Meng Y; Zhou D; Bi LJ; Rose J; Adang MJ; Wang BC; Yu Z; Sun M
    Biochem Biophys Res Commun; 2015 Jul; 462(3):184-9. PubMed ID: 25957471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extending the aerolysin family: from bacteria to vertebrates.
    Szczesny P; Iacovache I; Muszewska A; Ginalski K; van der Goot FG; Grynberg M
    PLoS One; 2011; 6(6):e20349. PubMed ID: 21687664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single molecule atomic force microscopy of aerolysin pore complexes reveals unexpected star-shaped topography.
    He J; Wang J; Hu J; Sun J; Czajkowsky DM; Shao Z
    J Mol Recognit; 2016 Apr; 29(4):174-81. PubMed ID: 26537438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesterol-dependent cytolysins.
    Gilbert RJ
    Adv Exp Med Biol; 2010; 677():56-66. PubMed ID: 20687480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis for receptor recognition and pore formation of a zebrafish aerolysin-like protein.
    Jia N; Liu N; Cheng W; Jiang YL; Sun H; Chen LL; Peng J; Zhang Y; Ding YH; Zhang ZH; Wang X; Cai G; Wang J; Dong MQ; Zhang Z; Wu H; Wang HW; Chen Y; Zhou CZ
    EMBO Rep; 2016 Feb; 17(2):235-48. PubMed ID: 26711430
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of functional domains of Clostridium septicum alpha toxin.
    Melton-Witt JA; Bentsen LM; Tweten RK
    Biochemistry; 2006 Dec; 45(48):14347-54. PubMed ID: 17128973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural Basis of the Pore-Forming Toxin/Membrane Interaction.
    Li Y; Li Y; Mengist HM; Shi C; Zhang C; Wang B; Li T; Huang Y; Xu Y; Jin T
    Toxins (Basel); 2021 Feb; 13(2):. PubMed ID: 33572271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary crystallographic analysis of two oligomerization-deficient mutants of the aerolysin toxin, H132D and H132N, in their proteolyzed forms.
    Pernot L; Schiltz M; van der Goot FG
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2010 Dec; 66(Pt 12):1626-30. PubMed ID: 21139211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.