These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2906679)
1. Factors affecting distribution of Bacillus thuringiensis serotype H-14 during flooding of rice fields. McLaughlin RE; Vidrine MF J Am Mosq Control Assoc; 1985 Sep; 1(3):381-4. PubMed ID: 2906679 [No Abstract] [Full Text] [Related]
2. An evaluation of Gambusia affinis and Bacillus thuringiensis var. israelensis as mosquito control agents in California wild rice fields. Kramer VL; Garcia R; Colwell AE J Am Mosq Control Assoc; 1988 Dec; 4(4):470-8. PubMed ID: 2906358 [TBL] [Abstract][Full Text] [Related]
3. Efficacy of various Bacillus thuringiensis var. israelensis formulations against Psorophora columbiae larvae as assessed in small rice plots, 1984-88. Meisch MV; Finch MF; Weathersbee AA; Jones JW; Bassi DG; Bowles DE J Am Mosq Control Assoc; 1990 Mar; 6(1):93-5. PubMed ID: 1969931 [TBL] [Abstract][Full Text] [Related]
4. Effect of rice husbandry on mosquito breeding at Mwea Rice Irrigation Scheme with reference to biocontrol strategies. Asimeng EJ; Mutinga MJ J Am Mosq Control Assoc; 1993 Mar; 9(1):17-22. PubMed ID: 8096871 [TBL] [Abstract][Full Text] [Related]
5. Effectiveness of aerial- and ground-applied Bacillus formulations against Anopheles quadrimaculatus larvae in Arkansas rice plots. Dennett JA; Meisch MV J Am Mosq Control Assoc; 2000 Sep; 16(3):229-33. PubMed ID: 11081651 [TBL] [Abstract][Full Text] [Related]
6. Efficacy of granular formulations of Bacillus thuringiensis (H-14) for the control of Anopheles larvae in rice fields. Lacey LA; Inman A J Am Mosq Control Assoc; 1985 Mar; 1(1):38-42. PubMed ID: 3880212 [TBL] [Abstract][Full Text] [Related]
7. [Use of the 14th serotype of Bacillus thuringiensis Berl. against the larvae of blood-sucking mosquitoes]. VolzhinskiÄ DV; Sokolova EI; Kosovskikh VL; Kulieva NM; Bikunova AN Med Parazitol (Mosk); 1984; (3):69-73. PubMed ID: 6146922 [No Abstract] [Full Text] [Related]
8. Evaluation of methylated soy oil and water-based formulations of Bacillus thuringiensis var. Israelensis and Golden Bear Oil (GB-1111) against anopheles quadrimaculatus larvae in small rice plots. Dennett JA; Lampman RL; Novak RJ; Meisch MV J Am Mosq Control Assoc; 2000 Dec; 16(4):342-5. PubMed ID: 11198923 [TBL] [Abstract][Full Text] [Related]
9. Efficacy of a slow release formulation of Bacillus thuringiensis H. 14 against mosquito larvae. Balakrishnan N; Pillai PK; Kalyanasundaram M; Balaraman K Indian J Med Res; 1986 Jun; 83():580-3. PubMed ID: 2875944 [No Abstract] [Full Text] [Related]
10. Efficacy of sustained-release formulations of Bacillus thuringiensis var. Israelensis and methoprene for control of Coquillettidia perturbans in Indiana. Walker ED J Am Mosq Control Assoc; 1987 Mar; 3(1):97-9. PubMed ID: 2904943 [No Abstract] [Full Text] [Related]
11. Preliminary field evaluation of a Malaysian isolate of Bacillus thuringiensis serotype H-14 against Culex pseudovishnui. Lee HL; Seleena P Southeast Asian J Trop Med Public Health; 1990 Mar; 21(1):143-4. PubMed ID: 2402673 [No Abstract] [Full Text] [Related]
12. Evaluation of Beecomist-applied Bacillus thuringiensis (H-14) against Anopheles quadrimaculatus larvae in rice fields. Sandoski CA; Yates MM; Olson JK; Meisch MV J Am Mosq Control Assoc; 1985 Sep; 1(3):316-9. PubMed ID: 3880248 [TBL] [Abstract][Full Text] [Related]
13. Achieving successful deployment of Bt rice. High SM; Cohen MB; Shu QY; Altosaar I Trends Plant Sci; 2004 Jun; 9(6):286-92. PubMed ID: 15165560 [No Abstract] [Full Text] [Related]
14. Field survey and greenhouse evaluation of non-rice host plants of the striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae), as refuges for resistance management of rice transformed with Bacillus thuringiensis toxin genes. Cuong NL; Cohen MB Bull Entomol Res; 2002 Jun; 92(3):265-8. PubMed ID: 12088543 [No Abstract] [Full Text] [Related]
15. Effectiveness of Bacillus thuringiensis serotype H-14 on certain Egyptian mosquito species in small ditches. Merdan AI; Hilmy NM; Ibrahim AA J Egypt Soc Parasitol; 1986 Jun; 16(1):171-83. PubMed ID: 2873191 [No Abstract] [Full Text] [Related]
16. Laboratory trials with Bacillus thuringiensis serotype H-14 in controlling mosquito larvae. Bekheit SS J Egypt Soc Parasitol; 1984 Jun; 14(1):71-6. PubMed ID: 6145746 [No Abstract] [Full Text] [Related]
17. [Prospects of improving microbial larvicides and methods of control of blood sucking insects and disease vectors]. Alekseev AN Med Parazitol (Mosk); 1987; (1):3-8. PubMed ID: 2883565 [No Abstract] [Full Text] [Related]
18. Use of Bactimos briquets (B.t.i. formulation) combined with the backswimmer Notonecta irrorata (Hemiptera:Notonectidae) for control of mosquito larvae. Neri-Barbosa JF; Quiroz-Martinez H; Rodriguez-Tovar ML; Tejada LO; Badii MH J Am Mosq Control Assoc; 1997 Mar; 13(1):87-9. PubMed ID: 9152881 [TBL] [Abstract][Full Text] [Related]
19. Efficacy of Duplex and Vectobac against Psorophora columbiae and Anopheles quadrimaculatus larvae in Arkansas ricefields. Bassi DG; Weathersbee AA; Meisch MV; Inman A J Am Mosq Control Assoc; 1989 Jun; 5(2):264-6. PubMed ID: 2568399 [No Abstract] [Full Text] [Related]
20. A dark brown mutant of Bacillus thuringiensis H. 14 synthesising higher level of mosquito larvicidal factor. Balaraman K; Hoti SL Indian J Med Res; 1987 Mar; 85():270-3. PubMed ID: 2886429 [No Abstract] [Full Text] [Related] [Next] [New Search]