BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 29066898)

  • 21. Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species.
    Lee MJ; Lee SJ; Yun SJ; Jang JY; Kang H; Kim K; Choi IH; Park S
    Int J Nanomedicine; 2016; 11():55-68. PubMed ID: 26730190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthesized composites of Au-Ag nanoparticles using Trapa peel extract induced ROS-mediated p53 independent apoptosis in cancer cells.
    Ahmad N; Sharma AK; Sharma S; Khan I; Sharma DK; Shamsi A; Santhosh Kumar TR; Seervi M
    Drug Chem Toxicol; 2019 Jan; 42(1):43-53. PubMed ID: 29842822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells.
    Gurunathan S; Han JW; Eppakayala V; Jeyaraj M; Kim JH
    Biomed Res Int; 2013; 2013():535796. PubMed ID: 23936814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of in vitro cellular responses of monocytes and keratinocytes to tannic acid modified silver nanoparticles.
    Orlowski P; Krzyzowska M; Zdanowski R; Winnicka A; Nowakowska J; Stankiewicz W; Tomaszewska E; Celichowski G; Grobelny J
    Toxicol In Vitro; 2013 Sep; 27(6):1798-808. PubMed ID: 23727252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Silver Nanoparticles Exhibit the Dose-Dependent Anti-Proliferative Effect against Human Squamous Carcinoma Cells Attenuated in the Presence of Berberine.
    Dziedzic A; Kubina R; BuĊ‚dak RJ; Skonieczna M; Cholewa K
    Molecules; 2016 Mar; 21(3):365. PubMed ID: 26999092
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.
    Dayem AA; Kim B; Gurunathan S; Choi HY; Yang G; Saha SK; Han D; Han J; Kim K; Kim JH; Cho SG
    Biotechnol J; 2014 Jul; 9(7):934-43. PubMed ID: 24827677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa.
    Ramalingam B; Parandhaman T; Das SK
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4963-76. PubMed ID: 26829373
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis.
    Piao MJ; Kang KA; Lee IK; Kim HS; Kim S; Choi JY; Choi J; Hyun JW
    Toxicol Lett; 2011 Feb; 201(1):92-100. PubMed ID: 21182908
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tannic acid-mediated green synthesis of antibacterial silver nanoparticles.
    Kim TY; Cha SH; Cho S; Park Y
    Arch Pharm Res; 2016 Apr; 39(4):465-473. PubMed ID: 26895244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exposure to silver nanoparticles induces size- and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells.
    Miethling-Graff R; Rumpker R; Richter M; Verano-Braga T; Kjeldsen F; Brewer J; Hoyland J; Rubahn HG; Erdmann H
    Toxicol In Vitro; 2014 Oct; 28(7):1280-9. PubMed ID: 24997297
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Male- and female-derived somatic and germ cell-specific toxicity of silver nanoparticles in mouse.
    Han JW; Jeong JK; Gurunathan S; Choi YJ; Das J; Kwon DN; Cho SG; Park C; Seo HG; Park JK; Kim JH
    Nanotoxicology; 2016; 10(3):361-73. PubMed ID: 26470004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolomics of silver nanoparticles toxicity in HaCaT cells: structure-activity relationships and role of ionic silver and oxidative stress.
    Carrola J; Bastos V; Jarak I; Oliveira-Silva R; Malheiro E; Daniel-da-Silva AL; Oliveira H; Santos C; Gil AM; Duarte IF
    Nanotoxicology; 2016 Oct; 10(8):1105-17. PubMed ID: 27144425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In vivo antitumor activity of biosynthesized silver nanoparticles using Ficus religiosa as a nanofactory in DAL induced mice model.
    Antony JJ; Sithika MA; Joseph TA; Suriyakalaa U; Sankarganesh A; Siva D; Kalaiselvi S; Achiraman S
    Colloids Surf B Biointerfaces; 2013 Aug; 108():185-90. PubMed ID: 23537836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles.
    Khan AU; Yuan Q; Wei Y; Khan ZU; Tahir K; Khan SU; Ahmad A; Khan S; Nazir S; Khan FU
    J Photochem Photobiol B; 2016 Jun; 159():49-58. PubMed ID: 27016719
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dendrophthoe falcata (L.f) Ettingsh (Neem mistletoe): a potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7).
    Sathishkumar G; Gobinath C; Wilson A; Sivaramakrishnan S
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():285-90. PubMed ID: 24681313
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Silver nanoparticles induce endoplasmatic reticulum stress response in zebrafish.
    Christen V; Capelle M; Fent K
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):519-28. PubMed ID: 23800688
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and extracellular accumulation of silver nanoparticles by employing radiation-resistant Deinococcus radiodurans, their characterization, and determination of bioactivity.
    Kulkarni RR; Shaiwale NS; Deobagkar DN; Deobagkar DD
    Int J Nanomedicine; 2015; 10():963-74. PubMed ID: 25673991
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Annona muricata leaf extract-mediated silver nanoparticles synthesis and its larvicidal potential against dengue, malaria and filariasis vector.
    Santhosh SB; Yuvarajan R; Natarajan D
    Parasitol Res; 2015 Aug; 114(8):3087-96. PubMed ID: 26002825
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles.
    Amooaghaie R; Saeri MR; Azizi M
    Ecotoxicol Environ Saf; 2015 Oct; 120():400-8. PubMed ID: 26122733
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mycosynthesis: antibacterial, antioxidant and antiproliferative activities of silver nanoparticles synthesized from Inonotus obliquus (Chaga mushroom) extract.
    Nagajyothi PC; Sreekanth TV; Lee JI; Lee KD
    J Photochem Photobiol B; 2014 Jan; 130():299-304. PubMed ID: 24380885
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.