These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 29066952)

  • 1. The Sleep-Wake Cycle in the Nicotinic Alpha-9 Acetylcholine Receptor Subunit Knock-Out Mice.
    Madrid-López N; Estrada J; Díaz J; Bassi A; Délano PH; Ocampo-Garcés A
    Front Cell Neurosci; 2017; 11():302. PubMed ID: 29066952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal Organization of the Sleep-Wake Cycle under Food Entrainment in the Rat.
    Castro-Faúndez J; Díaz J; Ocampo-Garcés A
    Sleep; 2016 Jul; 39(7):1451-65. PubMed ID: 27091526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance of the metabotropic glutamate receptor (mGluR5) in the regulation of NREM-REM sleep cycle and homeostasis: evidence from mGluR5 (-/-) mice.
    Ahnaou A; Raeymaekers L; Steckler T; Drinkenbrug WH
    Behav Brain Res; 2015 Apr; 282():218-26. PubMed ID: 25591476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Essential roles of GABA transporter-1 in controlling rapid eye movement sleep and in increased slow wave activity after sleep deprivation.
    Xu XH; Qu WM; Bian MJ; Huang F; Fei J; Urade Y; Huang ZL
    PLoS One; 2013; 8(10):e75823. PubMed ID: 24155871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential role of dopamine D2 receptor in the maintenance of wakefulness, but not in homeostatic regulation of sleep, in mice.
    Qu WM; Xu XH; Yan MM; Wang YQ; Urade Y; Huang ZL
    J Neurosci; 2010 Mar; 30(12):4382-9. PubMed ID: 20335474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological characterization of sleep/wake, activity and the response to caffeine in adult cynomolgus macaques.
    Goonawardena AV; Morairty SR; Orellana GA; Willoughby AR; Wallace TL; Kilduff TS
    Neurobiol Sleep Circadian Rhythms; 2019 Jan; 6():9-23. PubMed ID: 31236518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RGS Proteins and Gαi2 Modulate Sleep, Wakefulness, and Disruption of Sleep/ Wake States after Isoflurane and Sevoflurane Anesthesia.
    Zhang H; Wheat H; Wang P; Jiang S; Baghdoyan HA; Neubig RR; Shi XY; Lydic R
    Sleep; 2016 Feb; 39(2):393-404. PubMed ID: 26564126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. miR-155 deletion modulates lipopolysaccharide-induced sleep in female mice.
    Surbhi ; Borniger JC; Russart KLG; Zhang N; Magalang UJ; Nelson RJ
    Chronobiol Int; 2019 Feb; 36(2):188-202. PubMed ID: 30299169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian regulation of sleep and the sleep EEG under constant sleep pressure in the rat.
    Yasenkov R; Deboer T
    Sleep; 2010 May; 33(5):631-41. PubMed ID: 20469805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trace Amine-Associated Receptor 1 Regulates Wakefulness and EEG Spectral Composition.
    Schwartz MD; Black SW; Fisher SP; Palmerston JB; Morairty SR; Hoener MC; Kilduff TS
    Neuropsychopharmacology; 2017 May; 42(6):1305-1314. PubMed ID: 27658486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral state instability in orexin knock-out mice.
    Mochizuki T; Crocker A; McCormack S; Yanagisawa M; Sakurai T; Scammell TE
    J Neurosci; 2004 Jul; 24(28):6291-300. PubMed ID: 15254084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circadian sleep-wake cycle organization in squirrel monkeys.
    Wexler DB; Moore-Ede MC
    Am J Physiol; 1985 Mar; 248(3 Pt 2):R353-62. PubMed ID: 3976909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of an eight-hour advance of the light-dark cycle on sleep-wake rhythm in the rat.
    Sei H; Kiuchi T; Chang HY; Morita Y
    Neurosci Lett; 1992 Mar; 137(2):161-4. PubMed ID: 1584456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crepuscular rhythms of EEG sleep-wake in a hystricomorph rodent, Octodon degus.
    Kas MJ; Edgar DM
    J Biol Rhythms; 1998 Feb; 13(1):9-17. PubMed ID: 9486839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lesion of the pedunculopontine tegmental nucleus in rat augments cortical activation and disturbs sleep/wake state transitions structure.
    Petrovic J; Ciric J; Lazic K; Kalauzi A; Saponjic J
    Exp Neurol; 2013 Sep; 247():562-71. PubMed ID: 23481548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Behavioral sleep-wake homeostasis and EEG delta power are decoupled by chronic sleep restriction in the rat.
    Stephenson R; Caron AM; Famina S
    Sleep; 2015 May; 38(5):685-97. PubMed ID: 25669184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agomelatine treatment corrects impaired sleep-wake cycle and sleep architecture and increases MT
    Tchekalarova J; Kortenska L; Ivanova N; Atanasova M; Marinov P
    Psychopharmacology (Berl); 2020 Feb; 237(2):503-518. PubMed ID: 31720718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian rhythms and sleep have additive effects on respiration in the rat.
    Stephenson R; Liao KS; Hamrahi H; Horner RL
    J Physiol; 2001 Oct; 536(Pt 1):225-35. PubMed ID: 11579171
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narcolepsy susceptibility gene CCR3 modulates sleep-wake patterns in mice.
    Toyoda H; Honda Y; Tanaka S; Miyagawa T; Honda M; Honda K; Tokunaga K; Kodama T
    PLoS One; 2017; 12(11):e0187888. PubMed ID: 29186205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered EEG power spectrum, but not sleep-wake architecture, in HCN1 knockout mice.
    Bleakley LE; Keenan RJ; Graven RD; Metha JA; Ma S; Daykin H; Cornthwaite-Duncan L; Hoyer D; Reid CA; Jacobson LH
    Behav Brain Res; 2023 Feb; 437():114105. PubMed ID: 36089097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.