These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 29067135)

  • 1. The braingraph.org database of high resolution structural connectomes and the brain graph tools.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    Cogn Neurodyn; 2017 Oct; 11(5):483-486. PubMed ID: 29067135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The dorsal striatum and the dynamics of the consensus connectomes in the frontal lobe of the human brain.
    Kerepesi C; Varga B; Szalkai B; Grolmusz V
    Neurosci Lett; 2018 Apr; 673():51-55. PubMed ID: 29496609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The braingraph.org database with more than 1000 robust human connectomes in five resolutions.
    Varga B; Grolmusz V
    Cogn Neurodyn; 2021 Oct; 15(5):915-919. PubMed ID: 34603551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. How to Direct the Edges of the Connectomes: Dynamics of the Consensus Connectomes and the Development of the Connections in the Human Brain.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    PLoS One; 2016; 11(6):e0158680. PubMed ID: 27362431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing and applying Newtonian blurring: an augmented dataset of 126,000 human connectomes at braingraph.org.
    Keresztes L; Szögi E; Varga B; Grolmusz V
    Sci Rep; 2022 Feb; 12(1):3102. PubMed ID: 35197486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing advanced graph-theoretical parameters of the connectomes of the lobes of the human brain.
    Szalkai B; Varga B; Grolmusz V
    Cogn Neurodyn; 2018 Dec; 12(6):549-559. PubMed ID: 30483363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution directed human connectomes and the Consensus Connectome Dynamics.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    PLoS One; 2019; 14(4):e0215473. PubMed ID: 30990832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Budapest Reference Connectome Server v2.0.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    Neurosci Lett; 2015 May; 595():60-2. PubMed ID: 25862487
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The frequent subgraphs of the connectome of the human brain.
    Fellner M; Varga B; Grolmusz V
    Cogn Neurodyn; 2019 Oct; 13(5):453-460. PubMed ID: 31565090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping correlations of psychological and structural connectome properties of the dataset of the human connectome project with the maximum spanning tree method.
    Szalkai B; Varga B; Grolmusz V
    Brain Imaging Behav; 2019 Oct; 13(5):1185-1192. PubMed ID: 30088220
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parameterizable consensus connectomes from the Human Connectome Project: the Budapest Reference Connectome Server v3.0.
    Szalkai B; Kerepesi C; Varga B; Grolmusz V
    Cogn Neurodyn; 2017 Feb; 11(1):113-116. PubMed ID: 28174617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graph Theoretical Analysis Reveals: Women's Brains Are Better Connected than Men's.
    Szalkai B; Varga B; Grolmusz V
    PLoS One; 2015; 10(7):e0130045. PubMed ID: 26132764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is removal of weak connections necessary for graph-theoretical analysis of dense weighted structural connectomes from diffusion MRI?
    Civier O; Smith RE; Yeh CH; Connelly A; Calamante F
    Neuroimage; 2019 Jul; 194():68-81. PubMed ID: 30844506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain graph super-resolution for boosting neurological disorder diagnosis using unsupervised multi-topology connectional brain template learning.
    Mhiri I; Khalifa AB; Mahjoub MA; Rekik I
    Med Image Anal; 2020 Oct; 65():101768. PubMed ID: 32679534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The frequent complete subgraphs in the human connectome.
    Fellner M; Varga B; Grolmusz V
    PLoS One; 2020; 15(8):e0236883. PubMed ID: 32817642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative connectomics: Mapping the inter-individual variability of connections within the regions of the human brain.
    Kerepesi C; Szalkai B; Varga B; Grolmusz V
    Neurosci Lett; 2018 Jan; 662():17-21. PubMed ID: 28988973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying super-feminine, super-masculine and sex-defining connections in the human braingraph.
    Keresztes L; Szögi E; Varga B; Grolmusz V
    Cogn Neurodyn; 2021 Dec; 15(6):949-959. PubMed ID: 34786030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Network alignment and similarity reveal atlas-based topological differences in structural connectomes.
    Frigo M; Cruciani E; Coudert D; Deriche R; Natale E; Deslauriers-Gauthier S
    Netw Neurosci; 2021; 5(3):711-733. PubMed ID: 34746624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Frequent Network Neighborhood Mapping of the human hippocampus shows much more frequent neighbor sets in males than in females.
    Fellner M; Varga B; Grolmusz V
    PLoS One; 2020; 15(1):e0227910. PubMed ID: 31990956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An extensive assessment of network alignment algorithms for comparison of brain connectomes.
    Milano M; Guzzi PH; Tymofieva O; Xu D; Hess C; Veltri P; Cannataro M
    BMC Bioinformatics; 2017 Jun; 18(Suppl 6):235. PubMed ID: 28617222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.