These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 29067358)

  • 1. Asymmetric vanadium flow batteries: long lifespan via an anolyte overhang strategy.
    Mu D; Zhao Y; Yu L; Liu L; Xi J
    Phys Chem Chem Phys; 2017 Nov; 19(43):29195-29203. PubMed ID: 29067358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance.
    Jiang B; Yu L; Wu L; Mu D; Liu L; Xi J; Qiu X
    ACS Appl Mater Interfaces; 2016 May; 8(19):12228-38. PubMed ID: 27123693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayer Designed Hydrocarbon Membranes for All-Climate Vanadium Flow Batteries To Shield Catholyte Degradation and Mitigate Electrolyte Crossover.
    Yu L; Yu L; Wang L; Wang L; Qiu X; Xi J
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13285-13294. PubMed ID: 30882202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capacity Decay Mitigation by Asymmetric Positive/Negative Electrolyte Volumes in Vanadium Redox Flow Batteries.
    Park JH; Park JJ; Park OO; Yang JH
    ChemSusChem; 2016 Nov; 9(22):3181-3187. PubMed ID: 27767257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition.
    Shrestha A; Hendriks KH; Sigman MS; Minteer SD; Sanford MS
    Chemistry; 2020 Apr; 26(24):5369-5373. PubMed ID: 32049389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable Operation of Aqueous Organic Redox Flow Batteries in Air Atmosphere.
    Kong T; Liu J; Zhou X; Xu J; Xie Y; Chen J; Li X; Wang Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214819. PubMed ID: 36495124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The next generation vanadium flow batteries with high power density - a perspective.
    Lu W; Li X; Zhang H
    Phys Chem Chem Phys; 2017 Dec; 20(1):23-35. PubMed ID: 29218355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Durable and Efficient PTFE Sandwiched SPEEK Membrane for Vanadium Flow Batteries.
    Yu L; Xi J
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23425-30. PubMed ID: 27576544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures.
    Tracy JS; Horst ES; Roytman VA; Toste FD
    Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacity decay and remediation of nafion-based all-vanadium redox flow batteries.
    Luo Q; Li L; Wang W; Nie Z; Wei X; Li B; Chen B; Yang Z; Sprenkle V
    ChemSusChem; 2013 Feb; 6(2):268-74. PubMed ID: 23208862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ X-ray near-edge absorption spectroscopy investigation of the state of charge of all-vanadium redox flow batteries.
    Jia C; Liu Q; Sun CJ; Yang F; Ren Y; Heald SM; Liu Y; Li ZF; Lu W; Xie J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17920-5. PubMed ID: 25191695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Morphology and electrochemical properties of perfluorosulfonic acid ionomers for vanadium flow battery applications: effect of side-chain length.
    Ding C; Zhang H; Li X; Zhang H; Yao C; Shi D
    ChemSusChem; 2013 Jul; 6(7):1262-9. PubMed ID: 23775947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries.
    Zhou H; Shen Y; Xi J; Qiu X; Chen L
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15369-78. PubMed ID: 27229444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anion-conductive membranes with ultralow vanadium permeability and excellent performance in vanadium flow batteries.
    Mai Z; Zhang H; Zhang H; Xu W; Wei W; Na H; Li X
    ChemSusChem; 2013 Feb; 6(2):328-35. PubMed ID: 23341302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activated Carbon Fiber Paper Based Electrodes with High Electrocatalytic Activity for Vanadium Flow Batteries with Improved Power Density.
    Liu T; Li X; Xu C; Zhang H
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4626-4633. PubMed ID: 28094910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Economical Composite Membrane with High Ion Selectivity for Vanadium Flow Batteries.
    Zhang Y; Zhang D; Luan C; Zhang Y; Yu W; Liu J; Yan C
    Membranes (Basel); 2023 Feb; 13(3):. PubMed ID: 36984659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Ambient Temperature Molten Sodium-Vanadium Battery with Aqueous Flowing Catholyte.
    Liu C; Shamie JS; Shaw LL; Sprenkle VL
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1545-52. PubMed ID: 26720551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries.
    Friedl J; Lebedeva MA; Porfyrakis K; Stimming U; Chamberlain TW
    J Am Chem Soc; 2018 Jan; 140(1):401-405. PubMed ID: 29232117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes.
    Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capacity decay mechanism of microporous separator-based all-vanadium redox flow batteries and its recovery.
    Li B; Luo Q; Wei X; Nie Z; Thomsen E; Chen B; Sprenkle V; Wang W
    ChemSusChem; 2014 Feb; 7(2):577-84. PubMed ID: 24488680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.