BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 29067479)

  • 21. 4-(dimethylamino)butyric acid@PtNPs as enhancer for solid-state electrochemiluminescence aptasensor based on target-induced strand displacement.
    Gan X; Yuan R; Chai Y; Yuan Y; Mao L; Cao Y; Liao Y
    Biosens Bioelectron; 2012 Apr; 34(1):25-9. PubMed ID: 22387036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A.
    Zhu Y; Cai Y; Xu L; Zheng L; Wang L; Qi B; Xu C
    ACS Appl Mater Interfaces; 2015 Apr; 7(14):7492-6. PubMed ID: 25799081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Diamond-based electrochemical aptasensor realizing a femtomolar detection limit of bisphenol A.
    Ma Y; Liu J; Li H
    Biosens Bioelectron; 2017 Jun; 92():21-25. PubMed ID: 28182974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ru(bpy)
    Du FK; Zhang H; Tan XC; Yan J; Liu M; Chen X; Wu YY; Feng DF; Chen QY; Cen JM; Liu SG; Qiu YQ; Han HY
    Biosens Bioelectron; 2018 May; 106():50-56. PubMed ID: 29414088
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform.
    Beiranvand ZS; Abbasi AR; Dehdashtian S; Karimi Z; Azadbakht A
    Anal Biochem; 2017 Feb; 518():35-45. PubMed ID: 27789234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemiluminescence biosensor for miRNA-21 based on toehold-mediated strand displacement amplification with Ru(phen)
    Zhang Y; Xu G; Lian G; Luo F; Xie Q; Lin Z; Chen G
    Biosens Bioelectron; 2020 Jan; 147():111789. PubMed ID: 31655383
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Highly sensitive electrochemiluminescent biosensor for adenosine based on structure-switching of aptamer.
    Zhu X; Zhang Y; Yang W; Liu Q; Lin Z; Qiu B; Chen G
    Anal Chim Acta; 2011 Jan; 684(1-2):121-5. PubMed ID: 21167993
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An electrochemical aptasensor based on eATRP amplification for the detection of bisphenol A.
    Li M; Guo Z; Zheng X; Yang H; Feng W; Kong J
    Analyst; 2019 Oct; 144(19):5691-5699. PubMed ID: 31508622
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Characterization of Binding between Aptamer and Bisphenol A and Developing Electrochemical Aptasensors for Bisphenol A with Rationally Engineered Aptamers.
    Liu L; Yu H; Zhao Q
    Biosensors (Basel); 2022 Oct; 12(11):. PubMed ID: 36354422
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Supersandwich-type electrochemiluminescenct aptasensor based on Ru(phen)3(2+) functionalized hollow gold nanoparticles as signal-amplifying tags.
    Gui G; Zhuo Y; Chai YQ; Liao N; Zhao M; Han J; Zhu Q; Yuan R; Xiang Y
    Biosens Bioelectron; 2013 Sep; 47():524-9. PubMed ID: 23643946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles.
    Chai Y; Tian D; Cui H
    Anal Chim Acta; 2012 Feb; 715():86-92. PubMed ID: 22244171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Graphene quantums dots combined with endonuclease cleavage and bidentate chelation for highly sensitive electrochemiluminescent DNA biosensing.
    Lou J; Liu S; Tu W; Dai Z
    Anal Chem; 2015 Jan; 87(2):1145-51. PubMed ID: 25523862
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic separate "turn-on" fluorescent biosensor for Bisphenol A based on magnetic oxidation graphene.
    Hu LY; Niu CG; Wang XY; Huang DW; Zhang L; Zeng GM
    Talanta; 2017 Jun; 168():196-202. PubMed ID: 28391842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reusable and dual-potential responses electrogenerated chemiluminescence biosensor for synchronously cytosensing and dynamic cell surface N-glycan evaluation.
    He Y; Li J; Liu Y
    Anal Chem; 2015 Oct; 87(19):9777-85. PubMed ID: 26393525
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free electrochemiluminescence biosensor for ultrasensitive detection of telomerase activity in HeLa cells based on extension reaction and intercalation of Ru(phen)3 (2.).
    Lin Y; Yang L; Yue G; Chen L; Qiu B; Guo L; Lin Z; Chen G
    Anal Bioanal Chem; 2016 Oct; 408(25):7105-11. PubMed ID: 27108278
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An off-on-off electrochemiluminescence approach for ultrasensitive detection of thrombin.
    Deng L; Du Y; Xu JJ; Chen HY
    Biosens Bioelectron; 2014 Sep; 59():58-63. PubMed ID: 24699694
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Label-free aptamer-based electrochemical impedance biosensor for 17β-estradiol.
    Lin Z; Chen L; Zhang G; Liu Q; Qiu B; Cai Z; Chen G
    Analyst; 2012 Feb; 137(4):819-22. PubMed ID: 22158706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Label-Free Electrogenerated Chemiluminescence Aptasensing Method for Highly Sensitive Determination of Dopamine via Target-Induced DNA Conformational Change.
    Zhang D; Qian M; Yang X; Zhang C; Qi H; Qi H
    Anal Chem; 2023 Apr; 95(13):5500-5506. PubMed ID: 36967489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Voltammetric aptasensor for bisphenol A based on double signal amplification via gold-coated multiwalled carbon nanotubes and an ssDNA-dye complex.
    Li H; Ding S; Wang W; Lv Q; Wang Z; Bai H; Zhang Q
    Mikrochim Acta; 2019 Nov; 186(12):860. PubMed ID: 31786663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. G-quadruplex DNAzyme-based electrochemiluminescence biosensing strategy for VEGF165 detection: Combination of aptamer-target recognition and T7 exonuclease-assisted cycling signal amplification.
    Zhang H; Li M; Li C; Guo Z; Dong H; Wu P; Cai C
    Biosens Bioelectron; 2015 Dec; 74():98-103. PubMed ID: 26120816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.