These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 29067484)

  • 1. Crystal structure and iterative saturation mutagenesis of ChKRED20 for expanded catalytic scope.
    Zhao FJ; Jin Y; Liu Z; Guo C; Li TB; Li ZY; Wang G; Wu ZL
    Appl Microbiol Biotechnol; 2017 Dec; 101(23-24):8395-8404. PubMed ID: 29067484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-guided engineering of ChKRED20 from Chryseobacterium sp. CA49 for asymmetric reduction of aryl ketoesters.
    Li TB; Zhao FJ; Liu Z; Jin Y; Liu Y; Pei XQ; Zhang ZG; Wang G; Wu ZL
    Enzyme Microb Technol; 2019 Jun; 125():29-36. PubMed ID: 30885322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single mutations of ketoreductase ChKRED20 enhance the bioreductive production of (1S)-2-chloro-1-(3, 4-difluorophenyl) ethanol.
    Zhao FJ; Liu Y; Pei XQ; Guo C; Wu ZL
    Appl Microbiol Biotechnol; 2017 Mar; 101(5):1945-1952. PubMed ID: 27830294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid asymmetric reduction of ethyl 4-chloro-3-oxobutanoate using a thermostabilized mutant of ketoreductase ChKRED20.
    Zhao FJ; Pei XQ; Ren ZQ; Wu ZL
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3567-75. PubMed ID: 26658823
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure determination and mutagenesis analysis of the ene reductase NCR.
    Reich S; Hoeffken HW; Rosche B; Nestl BM; Hauer B
    Chembiochem; 2012 Nov; 13(16):2400-7. PubMed ID: 23033175
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-based and random mutagenesis approaches increase the organophosphate-degrading activity of a phosphotriesterase homologue from Deinococcus radiodurans.
    Hawwa R; Larsen SD; Ratia K; Mesecar AD
    J Mol Biol; 2009 Oct; 393(1):36-57. PubMed ID: 19631223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cloning, expression, and directed evolution of carbonyl reductase from Leifsonia xyli HS0904 with enhanced catalytic efficiency.
    Wang NQ; Sun J; Huang J; Wang P
    Appl Microbiol Biotechnol; 2014 Oct; 98(20):8591-601. PubMed ID: 24788330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. I86A/C295A mutant secondary alcohol dehydrogenase from Thermoanaerobacter ethanolicus has broadened substrate specificity for aryl ketones.
    Nealon CM; Welsh TP; Kim CS; Phillips RS
    Arch Biochem Biophys; 2016 Sep; 606():151-6. PubMed ID: 27495738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Asymmetric reduction of ketones and β-keto esters by (S)-1-phenylethanol dehydrogenase from denitrifying bacterium Aromatoleum aromaticum.
    Dudzik A; Snoch W; Borowiecki P; Opalinska-Piskorz J; Witko M; Heider J; Szaleniec M
    Appl Microbiol Biotechnol; 2015 Jun; 99(12):5055-69. PubMed ID: 25549618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii.
    Jiang W; Lin P; Yang R; Fang B
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8425-37. PubMed ID: 27198726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-Point Mutant Inverts the Stereoselectivity of a Carbonyl Reductase toward β-Ketoesters with Enhanced Activity.
    Li A; Wang T; Tian Q; Yang X; Yin D; Qin Y; Zhang L
    Chemistry; 2021 Apr; 27(20):6283-6294. PubMed ID: 33475219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tyr115, gln165 and trp209 contribute to the 1, 2-epoxy-3-(p-nitrophenoxy)propane-conjugating activity of glutathione S-transferase cGSTM1-1.
    Chern MK; Wu TC; Hsieh CH; Chou CC; Liu LF; Kuan IC; Yeh YH; Hsiao CD; Tam MF
    J Mol Biol; 2000 Jul; 300(5):1257-69. PubMed ID: 10903867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant.
    Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B
    Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active site mutants of Escherichia coli dethiobiotin synthetase: effects of mutations on enzyme catalytic and structural properties.
    Yang G; Sandalova T; Lohman K; Lindqvist Y; Rendina AR
    Biochemistry; 1997 Apr; 36(16):4751-60. PubMed ID: 9125495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pichia stipitis OYE 2.6 variants with improved catalytic efficiencies from site-saturation mutagenesis libraries.
    Patterson-Orazem A; Sullivan B; Stewart JD
    Bioorg Med Chem; 2014 Oct; 22(20):5628-32. PubMed ID: 25087048
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly enantioselective mutant carbonyl reductases created via structure-based site-saturation mutagenesis.
    Li H; Yang Y; Zhu D; Hua L; Kantardjieff K
    J Org Chem; 2010 Nov; 75(22):7559-64. PubMed ID: 20964397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural analysis reveals the substrate-binding mechanism for the expanded substrate specificity of mutant meso-diaminopimelate dehydrogenase.
    Liu W; Guo RT; Chen X; Li Z; Gao X; Huang CH; Wu Q; Feng J; Zhu D
    Chembiochem; 2015 Apr; 16(6):924-9. PubMed ID: 25754803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutation of Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase at Trp-110 affects stereoselectivity of aromatic ketone reduction.
    Patel JM; Musa MM; Rodriguez L; Sutton DA; Popik VV; Phillips RS
    Org Biomol Chem; 2014 Aug; 12(31):5905-10. PubMed ID: 24984815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural insights into the cofactor-assisted substrate recognition of yeast methylglyoxal/isovaleraldehyde reductase Gre2.
    Guo PC; Bao ZZ; Ma XX; Xia Q; Li WF
    Biochim Biophys Acta; 2014 Sep; 1844(9):1486-92. PubMed ID: 24879127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of a bacterial tyrosinase for improved catalytic efficiency towards D-tyrosine using random and site directed mutagenesis approaches.
    Molloy S; Nikodinovic-Runic J; Martin LB; Hartmann H; Solano F; Decker H; O'Connor KE
    Biotechnol Bioeng; 2013 Jul; 110(7):1849-57. PubMed ID: 23381872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.