These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 29067804)
1. Bioinspired Design of Underwater Superaerophobic and Superaerophilic Surfaces by Femtosecond Laser Ablation for Anti- or Capturing Bubbles. Yong J; Chen F; Fang Y; Huo J; Yang Q; Zhang J; Bian H; Hou X ACS Appl Mater Interfaces; 2017 Nov; 9(45):39863-39871. PubMed ID: 29067804 [TBL] [Abstract][Full Text] [Related]
2. Femtosecond laser induced underwater superaerophilic and superaerophobic PDMS sheets with through microholes for selective passage of air bubbles and further collection of underwater gas. Yong J; Chen F; Huo J; Fang Y; Yang Q; Zhang J; Hou X Nanoscale; 2018 Feb; 10(8):3688-3696. PubMed ID: 29340400 [TBL] [Abstract][Full Text] [Related]
3. Underwater Superaerophobic and Superaerophilic Nanoneedles-Structured Meshes for Water/Bubbles Separation: Removing or Collecting Gas Bubbles in Water. Yong J; Chen F; Li W; Huo J; Fang Y; Yang Q; Bian H; Hou X Glob Chall; 2018 Apr; 2(4):1700133. PubMed ID: 31565330 [TBL] [Abstract][Full Text] [Related]
4. Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water. Yong J; Singh SC; Zhan Z; Chen F; Guo C ACS Appl Mater Interfaces; 2019 Feb; 11(8):8667-8675. PubMed ID: 30698002 [TBL] [Abstract][Full Text] [Related]
5. Water/gas separation based on the selective bubble-passage effect of underwater superaerophobic and superaerophilic meshes processed by a femtosecond laser. Yong J; Zhuang J; Bai X; Huo J; Yang Q; Hou X; Chen F Nanoscale; 2021 Jun; 13(23):10414-10424. PubMed ID: 34018504 [TBL] [Abstract][Full Text] [Related]
6. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment. Chu D; Sun X; Hu Y; Duan JA Soft Matter; 2019 Sep; 15(37):7398-7403. PubMed ID: 31464333 [TBL] [Abstract][Full Text] [Related]
7. Laser-Induced Wettability Gradient Surface of the Aluminum Matrix Used for Directional Transportation and Collection of Underwater Bubbles. Zheng Z; Yang H; Cao Y; Dai Z ACS Omega; 2020 Jan; 5(1):718-725. PubMed ID: 31956822 [TBL] [Abstract][Full Text] [Related]
8. Laser Structuring of Underwater Bubble-Repellent Surface. Yang S; Yin K; Dong X; He J; Duan JA J Nanosci Nanotechnol; 2018 Dec; 18(12):8381-8385. PubMed ID: 30189963 [TBL] [Abstract][Full Text] [Related]
9. Bioinspired Reversible Switch between Underwater Superoleophobicity/Superaerophobicity and Oleophilicity/Aerophilicity and Improved Antireflective Property on the Nanosecond Laser-Ablated Superhydrophobic Titanium Surfaces. Lian Z; Xu J; Yu Z; Yu P; Ren W; Wang Z; Yu H ACS Appl Mater Interfaces; 2020 Feb; 12(5):6573-6580. PubMed ID: 31742380 [TBL] [Abstract][Full Text] [Related]
10. Relationship and Interconversion Between Superhydrophilicity, Underwater Superoleophilicity, Underwater Superaerophilicity, Superhydrophobicity, Underwater Superoleophobicity, and Underwater Superaerophobicity: A Mini-Review. Yong J; Yang Q; Hou X; Chen F Front Chem; 2020; 8():828. PubMed ID: 33134266 [TBL] [Abstract][Full Text] [Related]
11. Is Superhydrophobicity Equal to Underwater Superaerophilicity: Regulating the Gas Behavior on Superaerophilic Surface via Hydrophilic Defects. Cao M; Li Z; Ma H; Geng H; Yu C; Jiang L ACS Appl Mater Interfaces; 2018 Jun; 10(24):20995-21000. PubMed ID: 29845857 [TBL] [Abstract][Full Text] [Related]
12. Electrically Induced Underwater Superaerophilicity/Superaerophobicity Switching on Polypyrrole-Coated Mesh Films for Selective Bubble Permeation. Wang R; Liu P; Yu X; Sun X; Lai H; Cheng Z Chempluschem; 2022 Jan; 87(1):e202100491. PubMed ID: 35023641 [TBL] [Abstract][Full Text] [Related]
13. Switchable Underwater Bubble Wettability on Laser-Induced Titanium Multiscale Micro-/Nanostructures by Vertically Crossed Scanning. Jiao Y; Li C; Wu S; Hu Y; Li J; Yang L; Wu D; Chu J ACS Appl Mater Interfaces; 2018 May; 10(19):16867-16873. PubMed ID: 29694017 [TBL] [Abstract][Full Text] [Related]
14. The wettability of gas bubbles: from macro behavior to nano structures to applications. Huang C; Guo Z Nanoscale; 2018 Nov; 10(42):19659-19672. PubMed ID: 30335112 [TBL] [Abstract][Full Text] [Related]
15. Bioinspired Interfaces with Superwettability: From Materials to Chemistry. Su B; Tian Y; Jiang L J Am Chem Soc; 2016 Feb; 138(6):1727-48. PubMed ID: 26652501 [TBL] [Abstract][Full Text] [Related]
16. How To Obtain Six Different Superwettabilities on a Same Microstructured Pattern: Relationship between Various Superwettabilities in Different Solid/Liquid/Gas Systems. Yong J; Singh SC; Zhan Z; Chen F; Guo C Langmuir; 2019 Jan; 35(4):921-927. PubMed ID: 30609378 [TBL] [Abstract][Full Text] [Related]
17. Controllable manipulation of bubbles in water by using underwater superaerophobic graphene-oxide/gold-nanoparticle composite surfaces. Xu R; Xu X; He M; Su B Nanoscale; 2017 Dec; 10(1):231-238. PubMed ID: 29210427 [TBL] [Abstract][Full Text] [Related]
18. Wetting transitions on rough surfaces revealed with captive bubble experiments. The role of surface energy. Moraila CL; Montes Ruiz-Cabello FJ; Cabrerizo-Vílchez M; Rodríguez-Valverde MÁ J Colloid Interface Sci; 2019 Mar; 539():448-456. PubMed ID: 30605814 [TBL] [Abstract][Full Text] [Related]
19. Superaerophobicity: repellence of air bubbles from submerged, surface-engineered silicon substrates. Dorrer C; Rühe J Langmuir; 2012 Oct; 28(42):14968-73. PubMed ID: 23030248 [TBL] [Abstract][Full Text] [Related]
20. Overcoming Long-Range Unidirectional Transport of Underwater Bubbles on Laser-Textured Single-Layer Superaerophobic Dual-Rail Arrays. Wu S; Lu J; Li D; Huang J; Li C; Lao Z; Chen C ACS Appl Bio Mater; 2023 Jun; 6(6):2277-2283. PubMed ID: 37171103 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]