BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

592 related articles for article (PubMed ID: 29068020)

  • 21. Halogen-Decorated Metal-Organic Frameworks for Efficient and Selective CO
    Karmakar A; Santos AACD; Pagliaricci N; Pires J; Batista M; Alegria ECBA; Martin-Calvo A; Gutiérrez-Sevillano JJ; Calero S; Guedes da Silva MFC; Pettinari R; Pombeiro AJL
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38605636
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Polyfuran-Derived Microporous Carbons for Enhanced Adsorption of CO₂ and CH₄.
    Wang J; Krishna R; Wu X; Sun Y; Deng S
    Langmuir; 2015 Sep; 31(36):9845-52. PubMed ID: 26258871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effective Approach for Increasing the Heteroatom Doping Levels of Porous Carbons for Superior CO
    Abdelmoaty YH; Tessema TD; Norouzi N; El-Kadri OM; Turner JBM; El-Kaderi HM
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35802-35810. PubMed ID: 28956436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A lactam-functionalized copper bent diisophthalate framework displaying significantly enhanced adsorption of CO
    He M; Xia F; Xu T; Gao X; Jiang Z; Wang X; He Y
    Dalton Trans; 2019 Aug; 48(30):11374-11381. PubMed ID: 31282503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption.
    Zheng B; Yun R; Bai J; Lu Z; Du L; Li Y
    Inorg Chem; 2013 Mar; 52(6):2823-9. PubMed ID: 23458072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient separation of CO
    He C; Zhang P; Ma S; Zhang Y; Hu T
    Dalton Trans; 2023 Jun; 52(23):7975-7981. PubMed ID: 37222531
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isoreticular Microporous Metal-Organic Frameworks for Carbon Dioxide Capture.
    Cui H; Ye Y; Liu T; Alothman ZA; Alduhaish O; Lin RB; Chen B
    Inorg Chem; 2020 Dec; 59(23):17143-17148. PubMed ID: 33166119
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metal-Organic Framework with Rich Accessible Nitrogen Sites for Highly Efficient CO
    Ye Y; Zhang H; Chen L; Chen S; Lin Q; Wei F; Zhang Z; Xiang S
    Inorg Chem; 2019 Jun; 58(12):7754-7759. PubMed ID: 31145596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unusually large microporous HKUST-1 via polyethylene glycol-templated synthesis: enhanced CO
    Aloufi FA; Missaoui N; Halawani RF; Kahri H; Jamoussi B; Gross AJ
    Environ Sci Pollut Res Int; 2024 May; 31(21):31355-31372. PubMed ID: 38630398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High CO2-capture ability of a porous organic polymer bifunctionalized with carboxy and triazole groups.
    Xie LH; Suh MP
    Chemistry; 2013 Aug; 19(35):11590-7. PubMed ID: 23881821
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sustainable Biomass Glucose-Derived Porous Carbon Spheres with High Nitrogen Doping: As a Promising Adsorbent for CO
    Li Y; Wang S; Wang B; Wang Y; Wei J
    Nanomaterials (Basel); 2020 Jan; 10(1):. PubMed ID: 31963914
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Thermally and Chemically Stable Copper(II) Metal-Organic Framework with High Performance for Gas Adsorption and Separation.
    Ma ZL; Liu PX; Liu ZY; Wang JJ; Li LB; Tian L
    Inorg Chem; 2021 May; 60(9):6550-6558. PubMed ID: 33861587
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Versatile Microporous Zinc(II) Metal-Organic Framework for Selective Gas Adsorption, Cooperative Catalysis, and Luminescent Sensing.
    He H; Zhang DY; Guo F; Sun F
    Inorg Chem; 2018 Jun; 57(12):7314-7320. PubMed ID: 29877696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Facile Synthesis of a Pentiptycene-Based Highly Microporous Organic Polymer for Gas Storage and Water Treatment.
    Luo S; Zhang Q; Zhang Y; Weaver KP; Phillip WA; Guo R
    ACS Appl Mater Interfaces; 2018 May; 10(17):15174-15182. PubMed ID: 29658699
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of Surface Phenolic-OH Groups in N-Rich Porous Organic Polymers for Enhancing the CO
    Das SK; Bhanja P; Kundu SK; Mondal S; Bhaumik A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23813-23824. PubMed ID: 29956910
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining
    Roztocki K; Rauche M; Bon V; Kaskel S; Brunner E; Matoga D
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):28503-28513. PubMed ID: 34101414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Amino-Coordinated Metal-Organic Framework for Selective Gas Adsorption.
    Zhao N; Sun F; Li P; Mu X; Zhu G
    Inorg Chem; 2017 Jun; 56(12):6938-6942. PubMed ID: 28562024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Strategic Design and Functionalization of an Amine-Decorated Luminescent Metal Organic Framework for Selective Gas/Vapor Sorption and Nanomolar Sensing of 2,4,6-Trinitrophenol in Water.
    Das P; Mandal SK
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25360-25371. PubMed ID: 29957936
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three Co(II) Metal-Organic Frameworks with Diverse Architectures for Selective Gas Sorption and Magnetic Studies.
    Pal A; Chand S; Boquera JC; Lloret F; Lin JB; Pal SC; Das MC
    Inorg Chem; 2019 May; 58(9):6246-6256. PubMed ID: 30997801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Cationic MOF with High Uptake and Selectivity for CO2 due to Multiple CO2 -Philic Sites.
    Wang HH; Shi WJ; Hou L; Li GP; Zhu Z; Wang YY
    Chemistry; 2015 Nov; 21(46):16525-31. PubMed ID: 26417961
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.