These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

383 related articles for article (PubMed ID: 29068076)

  • 1. EMG-Based Estimation of Limb Movement Using Deep Learning With Recurrent Convolutional Neural Networks.
    Xia P; Hu J; Peng Y
    Artif Organs; 2018 May; 42(5):E67-E77. PubMed ID: 29068076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Subject-Transfer Framework Based on Single-Trial EMG Analysis Using Convolutional Neural Networks.
    Kim KT; Guan C; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):94-103. PubMed ID: 31613773
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of multi-output support vector regression on EMGs to decode hand continuous movement trajectory.
    Tian P; Hu J; Qi J; Xia P; Peng YH
    Biomed Mater Eng; 2015; 26 Suppl 1():S575-82. PubMed ID: 26406051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Evaluation of Convolutional Neural Network for Hand Gesture Recognition Using EMG.
    Asif AR; Waris A; Gilani SO; Jamil M; Ashraf H; Shafique M; Niazi IK
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32183473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial neural network EMG classifier for functional hand grasp movements prediction.
    Gandolla M; Ferrante S; Ferrigno G; Baldassini D; Molteni F; Guanziroli E; Cotti Cottini M; Seneci C; Pedrocchi A
    J Int Med Res; 2017 Dec; 45(6):1831-1847. PubMed ID: 27677300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regression convolutional neural network for improved simultaneous EMG control.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    J Neural Eng; 2019 Jun; 16(3):036015. PubMed ID: 30849774
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MuscleNET: mapping electromyography to kinematic and dynamic biomechanical variables by machine learning.
    Nasr A; Bell S; He J; Whittaker RL; Jiang N; Dickerson CR; McPhee J
    J Neural Eng; 2021 Aug; 18(4):. PubMed ID: 34352741
    [No Abstract]   [Full Text] [Related]  

  • 10. Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?
    Jiang N; Vujaklija I; Rehbaum H; Graimann B; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):549-58. PubMed ID: 24235278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Deep Transfer Learning Approach to Reducing the Effect of Electrode Shift in EMG Pattern Recognition-Based Control.
    Ameri A; Akhaee MA; Scheme E; Englehart K
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):370-379. PubMed ID: 31880557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiday EMG-Based Classification of Hand Motions with Deep Learning Techniques.
    Zia Ur Rehman M; Waris A; Gilani SO; Jochumsen M; Niazi IK; Jamil M; Farina D; Kamavuako EN
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30071617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous and proportional estimation of hand kinematics from EMG during mirrored movements at multiple degrees-of-freedom.
    Muceli S; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):371-8. PubMed ID: 22180516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of the dynamic spinal forces using a recurrent fuzzy neural network.
    Hou Y; Zurada JM; Karwowski W; Marras WS; Davis K
    IEEE Trans Syst Man Cybern B Cybern; 2007 Feb; 37(1):100-9. PubMed ID: 17278564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid model based on neural networks for biomedical relation extraction.
    Zhang Y; Lin H; Yang Z; Wang J; Zhang S; Sun Y; Yang L
    J Biomed Inform; 2018 May; 81():83-92. PubMed ID: 29601989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Convolutional and recurrent neural network for human activity recognition: Application on American sign language.
    Hernandez V; Suzuki T; Venture G
    PLoS One; 2020; 15(2):e0228869. PubMed ID: 32074124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust neural decoding for dexterous control of robotic hand kinematics.
    Fan J; Vargas L; Kamper DG; Hu X
    Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Learning Scheme for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions.
    Dwivedi A; Kwon Y; McDaid AJ; Liarokapis M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2205-2215. PubMed ID: 31443034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast learning method for convolutional neural networks using extreme learning machine and its application to lane detection.
    Kim J; Kim J; Jang GJ; Lee M
    Neural Netw; 2017 Mar; 87():109-121. PubMed ID: 28110106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Recurrent Neural Networks for Human Activity Recognition.
    Murad A; Pyun JY
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29113103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.