These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 2906810)
1. Catecholaminergic innervation of the spinal cord in the North American opossum, Didelphis virginiana. Pindzola RR; Ho RH; Martin GF Brain Behav Evol; 1988; 32(5):281-92. PubMed ID: 2906810 [TBL] [Abstract][Full Text] [Related]
2. Development of catecholaminergic projections to the spinal cord in the North American opossum, Didelphis virginiana. Pindzola RR; Ho RH; Martin GF J Comp Neurol; 1990 Apr; 294(3):399-417. PubMed ID: 1971285 [TBL] [Abstract][Full Text] [Related]
3. The brainstem origin of monoaminergic projections to the spinal cord of the North American opossum: a study using fluorescent tracers and fluorescence histochemistry. Martin GF; Cabana T; Humbertson AO Brain Res Bull; 1982; 9(1-6):217-25. PubMed ID: 6129037 [TBL] [Abstract][Full Text] [Related]
4. Raphespinal projections in the North American opossum: evidence for connectional heterogeneity. Martin GF; Cabana T; Ditirro FJ; Ho RH; Humbertson AO J Comp Neurol; 1982 Jun; 208(1):67-84. PubMed ID: 6749912 [TBL] [Abstract][Full Text] [Related]
5. Origin, course, and laterality of spinocerebellar axons in the North American opossum, Didelphis virginiana. Terman JR; Wang XM; Martin GF Anat Rec; 1998 Aug; 251(4):528-47. PubMed ID: 9713988 [TBL] [Abstract][Full Text] [Related]
6. The origins of supraspinal projections to lumbosacral and cervical levels of the spinal cord in the gray short-tailed Brazilian opossum, Monodelphis domestica. Holst MC; Ho RH; Martin GF Brain Behav Evol; 1991; 38(6):273-89. PubMed ID: 1684917 [TBL] [Abstract][Full Text] [Related]
7. Spinal projections from the mesencephalic and pontine reticular formation in the North American Opossum: a study using axonal transport techniques. Martin GF; Humbertson AO; Laxson LC; Panneton WM; Tschismadia I J Comp Neurol; 1979 Sep; 187(2):373-99. PubMed ID: 489785 [TBL] [Abstract][Full Text] [Related]
8. Anatomical demonstration of the location and collateralization of rubral neurons which project to the spinal cord, lateral brainstem and inferior olive in the North American opossum. Martin GF; Cabana T; Waltzer R Brain Behav Evol; 1983; 23(3-4):93-109. PubMed ID: 6667372 [TBL] [Abstract][Full Text] [Related]
9. Noradrenergic projections to the spinal cord of the rat. Westlund KN; Bowker RM; Ziegler MG; Coulter JD Brain Res; 1983 Mar; 263(1):15-31. PubMed ID: 6839168 [TBL] [Abstract][Full Text] [Related]
10. The brainstem origin of enkephalin- and substance-P-like immunoreactive axons in the spinal cord of the North American opossum. Cassini P; Ho RH; Martin GF Brain Behav Evol; 1989; 34(4):212-22. PubMed ID: 2480173 [TBL] [Abstract][Full Text] [Related]
11. Vasoactive intestinal polypeptide and substance P in primary afferent pathways to the sacral spinal cord of the cat. Kawatani M; Erdman SL; de Groat WC J Comp Neurol; 1985 Nov; 241(3):327-47. PubMed ID: 2418069 [TBL] [Abstract][Full Text] [Related]
12. The origins of supraspinal projections to the cervical and lumbar spinal cord at different stages of development in the gray short-tailed Brazilian opossum, Monodelphis domestica. Wang XM; Xu XM; Qin YQ; Martin GF Brain Res Dev Brain Res; 1992 Aug; 68(2):203-16. PubMed ID: 1382891 [TBL] [Abstract][Full Text] [Related]
13. Organization of tyrosine hydroxylase- and serotonin-immunoreactive brainstem neurons with axon collaterals to the periaqueductal gray and the spinal cord in the rat. Kwiat GC; Basbaum AI Brain Res; 1990 Sep; 528(1):83-94. PubMed ID: 1978796 [TBL] [Abstract][Full Text] [Related]
14. Calbindin-immunoreactive neurons in the reticular formation of the rat brainstem: catecholamine content and spinal projections. Goodchild AK; Llewellyn-Smith IJ; Sun QJ; Chalmers J; Cunningham AM; Pilowsky PM J Comp Neurol; 2000 Aug; 424(3):547-62. PubMed ID: 10906719 [TBL] [Abstract][Full Text] [Related]
15. Medullary visceral reflex circuits: local afferents to nucleus tractus solitarii synthesize catecholamines and project to thoracic spinal cord. Mtui EP; Anwar M; Reis DJ; Ruggiero DA J Comp Neurol; 1995 Jan; 351(1):5-26. PubMed ID: 7534775 [TBL] [Abstract][Full Text] [Related]
16. Spinal projections from the medullary reticular formation of the North American opossum: heterogeneity. Martin GF; Cabana T; Humbertson AO; Laxson LC; Panneton WM J Comp Neurol; 1981 Mar; 196(4):663-82. PubMed ID: 6110678 [TBL] [Abstract][Full Text] [Related]
17. Distribution of catecholamines in the brain stem and spinal cord of the lizard Varanus exanthematicus: an immunohistochemical study based on the use of antibodies to tyrosine hydroxylase. Wolters JG; ten Donkelaar HJ; Verhofstad AA Neuroscience; 1984 Oct; 13(2):469-93. PubMed ID: 6151148 [TBL] [Abstract][Full Text] [Related]
18. Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs. Sánchez-Camacho C; Martín O; Ten Donkelaar HJ; González A J Comp Neurol; 2002 Apr; 446(1):11-24. PubMed ID: 11920716 [TBL] [Abstract][Full Text] [Related]
19. Evidence for direct bulbospinal projections to laminae IX, X and the intermediolateral cell column. Studies using axonal transport techniques in the North American opossum. Martin GF; Humbertson AO; Laxson C; Panneton WM Brain Res; 1979 Jul; 170(1):165-71. PubMed ID: 88996 [No Abstract] [Full Text] [Related]
20. The projections of noradrenergic neurons in the A5 catecholamine cell group to the spinal cord in the rat: anatomical evidence that A5 neurons modulate nociception. Clark FM; Proudfit HK Brain Res; 1993 Jul; 616(1-2):200-10. PubMed ID: 7689410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]