These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 29068165)
1. Identification of chlamydial T3SS inhibitors through virtual screening against T3SS ATPase. Grishin AV; Luyksaar SI; Kapotina LN; Kirsanov DD; Zayakin ES; Karyagina AS; Zigangirova NA Chem Biol Drug Des; 2018 Mar; 91(3):717-727. PubMed ID: 29068165 [TBL] [Abstract][Full Text] [Related]
2. Context-Dependent Action of Scc4 Reinforces Control of the Type III Secretion System. Gao L; Cong Y; Plano GV; Rao X; Gisclair LN; Schesser Bartra S; Macnaughtan MA; Shen L J Bacteriol; 2020 Jul; 202(15):. PubMed ID: 32424009 [No Abstract] [Full Text] [Related]
3. Novel Noncompetitive Type Three Secretion System ATPase Inhibitors Shut Down Case HB; Mattock DS; Miller BR; Dickenson NE Biochemistry; 2020 Jul; 59(28):2667-2678. PubMed ID: 32567308 [No Abstract] [Full Text] [Related]
4. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Wolf K; Betts HJ; Chellas-Géry B; Hower S; Linton CN; Fields KA Mol Microbiol; 2006 Sep; 61(6):1543-55. PubMed ID: 16968227 [TBL] [Abstract][Full Text] [Related]
5. Shutting Down Shigella Secretion: Characterizing Small Molecule Type Three Secretion System ATPase Inhibitors. Case HB; Mattock DS; Dickenson NE Biochemistry; 2018 Dec; 57(50):6906-6916. PubMed ID: 30460850 [TBL] [Abstract][Full Text] [Related]
6. Conserved type III secretion system exerts important roles in Chlamydia trachomatis. Dai W; Li Z Int J Clin Exp Pathol; 2014; 7(9):5404-14. PubMed ID: 25337183 [TBL] [Abstract][Full Text] [Related]
7. Type III Secretion in Rucks EA Microbiol Mol Biol Rev; 2023 Sep; 87(3):e0003423. PubMed ID: 37358451 [TBL] [Abstract][Full Text] [Related]
8. Human GCIP interacts with CT847, a novel Chlamydia trachomatis type III secretion substrate, and is degraded in a tissue-culture infection model. Chellas-Géry B; Linton CN; Fields KA Cell Microbiol; 2007 Oct; 9(10):2417-30. PubMed ID: 17532760 [TBL] [Abstract][Full Text] [Related]
9. Application of β-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. Mueller KE; Fields KA PLoS One; 2015; 10(8):e0135295. PubMed ID: 26258949 [TBL] [Abstract][Full Text] [Related]
10. The molecular mechanism of induction of unfolded protein response by Chlamydia. George Z; Omosun Y; Azenabor AA; Goldstein J; Partin J; Joseph K; Ellerson D; He Q; Eko F; McDonald MA; Reed M; Svoboda P; Stuchlik O; Pohl J; Lutter E; Bandea C; Black CM; Igietseme JU Biochem Biophys Res Commun; 2019 Jan; 508(2):421-429. PubMed ID: 30503337 [TBL] [Abstract][Full Text] [Related]
11. Host-pathogen reorganisation during host cell entry by Chlamydia trachomatis. Nans A; Ford C; Hayward RD Microbes Infect; 2015; 17(11-12):727-31. PubMed ID: 26320027 [TBL] [Abstract][Full Text] [Related]
12. Small molecule inhibitors of type III secretion in Yersinia block the Chlamydia pneumoniae infection cycle. Bailey L; Gylfe A; Sundin C; Muschiol S; Elofsson M; Nordström P; Henriques-Normark B; Lugert R; Waldenström A; Wolf-Watz H; Bergström S FEBS Lett; 2007 Feb; 581(4):587-95. PubMed ID: 17257594 [TBL] [Abstract][Full Text] [Related]
13. A novel protease inhibitor causes inclusion vacuole reduction and disrupts the intracellular growth of Chlamydia trachomatis. Zhou Y; Lu X; Huang D; Lu Y; Zhang H; Zhang L; Yu P; Wang F; Wang Y Biochem Biophys Res Commun; 2019 Aug; 516(1):157-162. PubMed ID: 31202460 [TBL] [Abstract][Full Text] [Related]
14. Got mutants? How advances in chlamydial genetics have furthered the study of effector proteins. Andersen SE; Bulman LM; Steiert B; Faris R; Weber MM Pathog Dis; 2021 Feb; 79(2):. PubMed ID: 33512479 [TBL] [Abstract][Full Text] [Related]
15. Inclusion Membrane Growth and Composition Are Altered by Overexpression of Specific Inclusion Membrane Proteins in Chlamydia trachomatis L2. Olson-Wood MG; Jorgenson LM; Ouellette SP; Rucks EA Infect Immun; 2021 Jun; 89(7):e0009421. PubMed ID: 33875478 [TBL] [Abstract][Full Text] [Related]
16. Regulation of chlamydial infection by host autophagy and vacuolar ATPase-bearing organelles. Yasir M; Pachikara ND; Bao X; Pan Z; Fan H Infect Immun; 2011 Oct; 79(10):4019-28. PubMed ID: 21807906 [TBL] [Abstract][Full Text] [Related]
17. Evidence that CT694 is a novel Chlamydia trachomatis T3S substrate capable of functioning during invasion or early cycle development. Hower S; Wolf K; Fields KA Mol Microbiol; 2009 Jun; 72(6):1423-37. PubMed ID: 19460098 [TBL] [Abstract][Full Text] [Related]
18. Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. Hobolt-Pedersen AS; Christiansen G; Timmerman E; Gevaert K; Birkelund S FEMS Immunol Med Microbiol; 2009 Oct; 57(1):46-58. PubMed ID: 19682078 [TBL] [Abstract][Full Text] [Related]
19. Targeted Disruption of Chlamydia trachomatis Invasion by in Trans Expression of Dominant Negative Tarp Effectors. Parrett CJ; Lenoci RV; Nguyen B; Russell L; Jewett TJ Front Cell Infect Microbiol; 2016; 6():84. PubMed ID: 27602332 [TBL] [Abstract][Full Text] [Related]
20. Structure of CT584 from Chlamydia trachomatis refined to 3.05 Å resolution. Barta ML; Hickey J; Kemege KE; Lovell S; Battaile KP; Hefty PS Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Nov; 69(Pt 11):1196-201. PubMed ID: 24192348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]