BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 29068198)

  • 41. Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles.
    Wang M; Hou W; Mi CC; Wang WX; Xu ZR; Teng HH; Mao CB; Xu SK
    Anal Chem; 2009 Nov; 81(21):8783-9. PubMed ID: 19807113
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review.
    DaCosta MV; Doughan S; Han Y; Krull UJ
    Anal Chim Acta; 2014 Jun; 832():1-33. PubMed ID: 24890691
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Critical Considerations on the Clinical Translation of Upconversion Nanoparticles (UCNPs): Recommendations from the European Upconversion Network (COST Action CM1403).
    Oliveira H; Bednarkiewicz A; Falk A; Fröhlich E; Lisjak D; Prina-Mello A; Resch S; Schimpel C; Vrček IV; Wysokińska E; Gorris HH
    Adv Healthc Mater; 2019 Jan; 8(1):e1801233. PubMed ID: 30536962
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Near-infrared-driven upconversion nanoparticles with photocatalysts through water-splitting towards cancer treatment.
    Dash P; Panda PK; Su C; Lin YC; Sakthivel R; Chen SL; Chung RJ
    J Mater Chem B; 2024 Apr; 12(16):3881-3907. PubMed ID: 38572601
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Designing photon upconversion nanoparticles capable of intense emission in whole human blood.
    Jurga N; Ryszczyńska S; Grzyb T
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123220. PubMed ID: 37542873
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Experimental and theoretical photoluminescence studies in nucleic acid assembled gold-upconverting nanoparticle clusters.
    He L; Mao C; Cho S; Ma K; Xi W; Bowman CN; Park W; Cha JN
    Nanoscale; 2015 Nov; 7(41):17254-60. PubMed ID: 26427014
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Phytoglycogen Encapsulation of Lanthanide-Based Nanoparticles as an Optical Imaging Platform with Therapeutic Potential.
    Rodrigues EM; Calvert ND; Crawford JC; Liu N; Shuhendler AJ; Hemmer E
    Small; 2022 Jun; 18(24):e2107130. PubMed ID: 35560500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Upconverting nanocomposites with combined photothermal and photodynamic effects.
    Huang Y; Skripka A; Labrador-Páez L; Sanz-Rodríguez F; Haro-González P; Jaque D; Rosei F; Vetrone F
    Nanoscale; 2018 Jan; 10(2):791-799. PubMed ID: 29256568
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Seeing, Targeting and Delivering with Upconverting Nanoparticles.
    Jalani G; Tam V; Vetrone F; Cerruti M
    J Am Chem Soc; 2018 Sep; 140(35):10923-10931. PubMed ID: 30113851
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of a multiplexing potency assay using upconverting nanoparticles-based luminescence resonance energy transfer.
    Han JH; Toner T; Gunawan R
    J Immunol Methods; 2022 Nov; 510():113364. PubMed ID: 36179896
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exploring Heterostructured Upconversion Nanoparticles: From Rational Engineering to Diverse Applications.
    Zhang Y; Zhu X; Zhang Y
    ACS Nano; 2021 Mar; 15(3):3709-3735. PubMed ID: 33689307
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Absolute upconversion quantum yields of blue-emitting LiYF
    Meijer MS; Rojas-Gutierrez PA; Busko D; Howard IA; Frenzel F; Würth C; Resch-Genger U; Richards BS; Turshatov A; Capobianco JA; Bonnet S
    Phys Chem Chem Phys; 2018 Sep; 20(35):22556-22562. PubMed ID: 30155527
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Contemporary Synthesis of Ultrasmall (sub-10 nm) Upconverting Nanomaterials.
    Joshi T; Mamat C; Stephan H
    ChemistryOpen; 2020 Jun; 9(6):703-712. PubMed ID: 32547900
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications.
    Wu X; Zhang Y; Takle K; Bilsel O; Li Z; Lee H; Zhang Z; Li D; Fan W; Duan C; Chan EM; Lois C; Xiang Y; Han G
    ACS Nano; 2016 Jan; 10(1):1060-6. PubMed ID: 26736013
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent Progress of Rare-Earth Doped Upconversion Nanoparticles: Synthesis, Optimization, and Applications.
    Zhu X; Zhang J; Liu J; Zhang Y
    Adv Sci (Weinh); 2019 Nov; 6(22):1901358. PubMed ID: 31763145
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Polymer-coated NaYF₄:Yb³⁺, Er³⁺ upconversion nanoparticles for charge-dependent cellular imaging.
    Jin J; Gu YJ; Man CW; Cheng J; Xu Z; Zhang Y; Wang H; Lee VH; Cheng SH; Wong WT
    ACS Nano; 2011 Oct; 5(10):7838-47. PubMed ID: 21905691
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recent progress in upconversion luminescence nanomaterials for biomedical applications.
    Duan C; Liang L; Li L; Zhang R; Xu ZP
    J Mater Chem B; 2018 Jan; 6(2):192-209. PubMed ID: 32254163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles.
    Wang C; Tao H; Cheng L; Liu Z
    Biomaterials; 2011 Sep; 32(26):6145-54. PubMed ID: 21616529
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications.
    Gorris HH; Resch-Genger U
    Anal Bioanal Chem; 2017 Oct; 409(25):5875-5890. PubMed ID: 28687881
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Study of near-infrared light-induced excitation of upconversion nanoparticles as a vector for non-viral DNA delivery.
    Wang JH; Chen HY; Chuang CC; Chen JC
    RSC Adv; 2020 Nov; 10(67):41013-41021. PubMed ID: 35519194
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.