These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs. Pahoff S; Meinert C; Bas O; Nguyen L; Klein TJ; Hutmacher DW J Mater Chem B; 2019 Mar; 7(10):1761-1772. PubMed ID: 32254918 [TBL] [Abstract][Full Text] [Related]
3. Gelatin methacrylate scaffold for bone tissue engineering: The influence of polymer concentration. Celikkin N; Mastrogiacomo S; Jaroszewicz J; Walboomers XF; Swieszkowski W J Biomed Mater Res A; 2018 Jan; 106(1):201-209. PubMed ID: 28884519 [TBL] [Abstract][Full Text] [Related]
4. Photopolymerization of cell-laden gelatin methacryloyl hydrogels using a dental curing light for regenerative dentistry. Monteiro N; Thrivikraman G; Athirasala A; Tahayeri A; França CM; Ferracane JL; Bertassoni LE Dent Mater; 2018 Mar; 34(3):389-399. PubMed ID: 29199008 [TBL] [Abstract][Full Text] [Related]
5. Heparin-based self-assembling peptide scaffold reestablish chondrogenic phenotype of expanded de-differentiated human chondrocytes. Recha-Sancho L; Semino CE J Biomed Mater Res A; 2016 Jul; 104(7):1694-706. PubMed ID: 26939919 [TBL] [Abstract][Full Text] [Related]
6. Enhanced chondrogenic potential in GelMA-based 3D cartilage model via Wnt3a surface immobilization. Imere A; Foster NC; Hajiali H; Okur KE; Wright AL; Barroso IA; Haj AJE Sci Rep; 2024 Jul; 14(1):15022. PubMed ID: 38951570 [TBL] [Abstract][Full Text] [Related]
7. Gelatin Methacryloyl-Riboflavin (GelMA-RF) Hydrogels for Bone Regeneration. Goto R; Nishida E; Kobayashi S; Aino M; Ohno T; Iwamura Y; Kikuchi T; Hayashi JI; Yamamoto G; Asakura M; Mitani A Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33561941 [TBL] [Abstract][Full Text] [Related]
8. Interplay between stiffness and degradation of architectured gelatin hydrogels leads to differential modulation of chondrogenesis in vitro and in vivo. Sarem M; Arya N; Heizmann M; Neffe AT; Barbero A; Gebauer TP; Martin I; Lendlein A; Shastri VP Acta Biomater; 2018 Mar; 69():83-94. PubMed ID: 29378326 [TBL] [Abstract][Full Text] [Related]
9. Glucosamine-grafted methacrylated gelatin hydrogels as potential biomaterials for cartilage repair. Suo H; Li L; Zhang C; Yin J; Xu K; Liu J; Fu J J Biomed Mater Res B Appl Biomater; 2020 Apr; 108(3):990-999. PubMed ID: 31369700 [TBL] [Abstract][Full Text] [Related]
10. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Yue K; Trujillo-de Santiago G; Alvarez MM; Tamayol A; Annabi N; Khademhosseini A Biomaterials; 2015 Dec; 73():254-71. PubMed ID: 26414409 [TBL] [Abstract][Full Text] [Related]
11. Tissue-specific bioactivity of soluble tendon-derived and cartilage-derived extracellular matrices on adult mesenchymal stem cells. Rothrauff BB; Yang G; Tuan RS Stem Cell Res Ther; 2017 Jun; 8(1):133. PubMed ID: 28583182 [TBL] [Abstract][Full Text] [Related]
12. Peptide-functionalized starPEG/heparin hydrogels direct mitogenicity, cell morphology and cartilage matrix distribution in vitro and in vivo. Hesse E; Freudenberg U; Niemietz T; Greth C; Weisser M; Hagmann S; Binner M; Werner C; Richter W J Tissue Eng Regen Med; 2018 Jan; 12(1):229-239. PubMed ID: 28083992 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and characterization of C2C12-laden gelatin methacryloyl (GelMA) from marine and mammalian sources. Elkhoury K; Morsink M; Tahri Y; Kahn C; Cleymand F; Shin SR; Arab-Tehrany E; Sanchez-Gonzalez L Int J Biol Macromol; 2021 Jul; 183():918-926. PubMed ID: 33971227 [TBL] [Abstract][Full Text] [Related]
14. Efficacy of thermoresponsive, photocrosslinkable hydrogels derived from decellularized tendon and cartilage extracellular matrix for cartilage tissue engineering. Rothrauff BB; Coluccino L; Gottardi R; Ceseracciu L; Scaglione S; Goldoni L; Tuan RS J Tissue Eng Regen Med; 2018 Jan; 12(1):e159-e170. PubMed ID: 28486778 [TBL] [Abstract][Full Text] [Related]
15. Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. Gu Y; Zhang L; Du X; Fan Z; Wang L; Sun W; Cheng Y; Zhu Y; Chen C J Biomater Appl; 2018 Nov; 33(5):609-618. PubMed ID: 30360677 [TBL] [Abstract][Full Text] [Related]
16. Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Mouser VH; Melchels FP; Visser J; Dhert WJ; Gawlitta D; Malda J Biofabrication; 2016 Jul; 8(3):035003. PubMed ID: 27431733 [TBL] [Abstract][Full Text] [Related]
17. Injectable stress relaxation gelatin-based hydrogels with positive surface charge for adsorption of aggrecan and facile cartilage tissue regeneration. Wang KY; Jin XY; Ma YH; Cai WJ; Xiao WY; Li ZW; Qi X; Ding J J Nanobiotechnology; 2021 Jul; 19(1):214. PubMed ID: 34275471 [TBL] [Abstract][Full Text] [Related]
18. Unveiling the versatility of gelatin methacryloyl hydrogels: a comprehensive journey into biomedical applications. Pramanik S; Alhomrani M; Alamri AS; Alsanie WF; Nainwal P; Kimothi V; Deepak A; Sargsyan AS Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38768611 [TBL] [Abstract][Full Text] [Related]