These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29068644)

  • 1. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot.
    Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L
    J Healthc Eng; 2017; 2017():. PubMed ID: 29068644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot.
    Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L
    J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. sEMG-Based Gain-Tuned Compliance Control for the Lower Limb Rehabilitation Robot during Passive Training.
    Tian J; Wang H; Zheng S; Ning Y; Zhang X; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots.
    Yan H; Wang H; Vladareanu L; Lin M; Vladareanu V; Li Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement Method of Human Lower Limb Joint Range of Motion Through Human-Machine Interaction Based on Machine Vision.
    Wang X; Liu G; Feng Y; Li W; Niu J; Gan Z
    Front Neurorobot; 2021; 15():753924. PubMed ID: 34720913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of technological and clinical aspects of robot-aided rehabilitation of upper-extremity after stroke.
    Babaiasl M; Mahdioun SH; Jaryani P; Yazdani M
    Disabil Rehabil Assist Technol; 2016; 11(4):263-80. PubMed ID: 25600057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction.
    Zhang Y; Li T; Tao H; Liu F; Hu B; Wu M; Yu H
    Front Bioeng Biotechnol; 2023; 11():1332689. PubMed ID: 38234302
    [No Abstract]   [Full Text] [Related]  

  • 9. Patient-Centered Robot-Aided Passive Neurorehabilitation Exercise Based on Safety-Motion Decision-Making Mechanism.
    Pan L; Song A; Duan S; Yu Z
    Biomed Res Int; 2017; 2017():4185939. PubMed ID: 28194413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive Gait Training of a Lower Limb Rehabilitation Robot Based on Human-Robot Interaction Force Measurement.
    Yu F; Liu Y; Wu Z; Tan M; Yu J
    Cyborg Bionic Syst; 2024; 5():0115. PubMed ID: 38912323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-Robot Cooperative Strength Training Based on Robust Admittance Control Strategy.
    Lin M; Wang H; Yang C; Liu W; Niu J; Vladareanu L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Position Based Impedance Control Strategy for a Lower Limb Rehabilitation Robot.
    Liang X; Wang W; Hou ZG; Ren S; Wang J; Shi W; Peng L; Su T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():437-441. PubMed ID: 31945932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spring damping based control for a novel lower limb rehabilitation robot with active flexible training planning.
    Hu J; Meng Q; Zhu Y; Zhang X; Wu W; Yu H
    Technol Health Care; 2023; 31(2):565-578. PubMed ID: 36120745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-degree-of-freedom reconfigurable ankle rehabilitation robot with adjustable workspace for post-stroke lower limb ankle rehabilitation.
    Meng Q; Liu G; Xu X; Meng Q; Qin L; Yu H
    Front Bioeng Biotechnol; 2023; 11():1323645. PubMed ID: 38076434
    [No Abstract]   [Full Text] [Related]  

  • 15. An Advanced Adaptive Control of Lower Limb Rehabilitation Robot.
    Du Y; Wang H; Qiu S; Yao W; Xie P; Chen X
    Front Robot AI; 2018; 5():116. PubMed ID: 33500995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum.
    Ghannadi B; Sharif Razavian R; McPhee J
    Front Robot AI; 2018; 5():124. PubMed ID: 33501003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impedance Sliding-Mode Control Based on Stiffness Scheduling for Rehabilitation Robot Systems.
    Hu K; Ma Z; Zou S; Li J; Ding H
    Cyborg Bionic Syst; 2024; 5():0099. PubMed ID: 38827223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A New Projected Active Set Conjugate Gradient Approach for Taylor-Type Model Predictive Control: Application to Lower Limb Rehabilitation Robots With Passive and Active Rehabilitation.
    Shi T; Tian Y; Sun Z; Zhang B; Pang Z; Yu J; Zhang X
    Front Neurorobot; 2020; 14():559048. PubMed ID: 33343324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Training strategies for a lower limb rehabilitation robot based on impedance control.
    Hu J; Hou Z; Zhang F; Chen Y; Li P
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():6032-5. PubMed ID: 23367304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.