BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29068683)

  • 1. Perrhenate-Catalyzed Deoxydehydration of a Vicinal Diol: A Comparative Density Functional Theory Study.
    Shakeri J; Hadadzadeh H; Farrokhpour H; Joshaghani M; Weil M
    J Phys Chem A; 2017 Nov; 121(45):8688-8696. PubMed ID: 29068683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical studies on the mechanism of molybdenum-catalysed deoxydehydration of diols.
    Verdicchio F; Galindo A
    Dalton Trans; 2023 May; 52(18):5935-5942. PubMed ID: 37039232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DFT Studies on the Mechanism of the Vanadium-Catalyzed Deoxydehydration of Diols.
    Galindo A
    Inorg Chem; 2016 Mar; 55(5):2284-9. PubMed ID: 26900876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DFT study of the molybdenum-catalyzed deoxydehydration of vicinal diols.
    Lupp D; Christensen NJ; Dethlefsen JR; Fristrup P
    Chemistry; 2015 Feb; 21(8):3435-42. PubMed ID: 25588805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic Study on Oxorhenium-Catalyzed Deoxydehydration and Allylic Alcohol Isomerization.
    Wu D; Zhang Y; Su H
    Chem Asian J; 2016 May; 11(10):1565-71. PubMed ID: 26991093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deoxydehydration of polyols.
    Boucher-Jacobs C; Nicholas KM
    Top Curr Chem; 2014; 353():163-84. PubMed ID: 24756633
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent Advances in the Deoxydehydration of Vicinal Diols and Polyols.
    Donnelly LJ; Thomas SP; Love JB
    Chem Asian J; 2019 Nov; 14(21):3782-3790. PubMed ID: 31573149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multielectron atom transfer reactions of perchlorate and other substrates catalyzed by rhenium oxazoline and thiazoline complexes: reaction kinetics, mechanisms, and density functional theory calculations.
    McPherson LD; Drees M; Khan SI; Strassner T; Abu-Omar MM
    Inorg Chem; 2004 Jun; 43(13):4036-50. PubMed ID: 15206886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational study on the reaction mechanism of hydrosilylation of carbonyls catalyzed by high-valent rhenium(V)-di-oxo complexes.
    Chung LW; Lee HG; Lin Z; Wu YD
    J Org Chem; 2006 Aug; 71(16):6000-9. PubMed ID: 16872182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deoxydehydration of vicinal diols by homogeneous catalysts: a mechanistic overview.
    DeNike KA; Kilyanek SM
    R Soc Open Sci; 2019 Nov; 6(11):191165. PubMed ID: 31827851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Cp
    Li J; Lutz M; Otte M; Klein Gebbink RJM
    ChemCatChem; 2018 Oct; 10(20):4755-4760. PubMed ID: 31007775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rhenium-catalyzed deoxydehydration of diols and polyols.
    Dethlefsen JR; Fristrup P
    ChemSusChem; 2015 Mar; 8(5):767-75. PubMed ID: 25477245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Radical Mechanism for the Vanadium-Catalyzed Deoxydehydration of Glycols.
    de Vicente Poutás LC; Castiñeira Reis M; Sanz R; López CS; Faza ON
    Inorg Chem; 2016 Nov; 55(21):11372-11382. PubMed ID: 27740760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deoxydehydration of polyols catalyzed by a molybdenum dioxo-complex supported by a dianionic ONO pincer ligand.
    Tran R; Kilyanek SM
    Dalton Trans; 2019 Nov; 48(43):16304-16311. PubMed ID: 31621730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Deoxydehydration of Cyclic trans-Diol Substrates: An Experimental and Computational Study of the Reaction Mechanism of Vanadium(V)-based Catalysis*.
    Aksanoglu E; Lim YH; Bryce RA
    ChemSusChem; 2021 Mar; 14(6):1545-1553. PubMed ID: 33465299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The unexpected mechanism underlying the high-valent mono-oxo-rhenium(V) hydride catalyzed hydrosilylation of C=N functionalities: insights from a DFT study.
    Wang J; Wang W; Huang L; Yang X; Wei H
    Chemphyschem; 2015 Apr; 16(5):1052-60. PubMed ID: 25703794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxorhenium complexes bearing the water-soluble tris(pyrazol-1-yl)methanesulfonate, 1,3,5-triaza-7-phosphaadamantane, or related ligands, as catalysts for Baeyer-Villiger oxidation of ketones.
    Martins LM; Alegria EC; Smoleński P; Kuznetsov ML; Pombeiro AJ
    Inorg Chem; 2013 Apr; 52(8):4534-46. PubMed ID: 23534942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic insights on the ortho-hydroxylation of aromatic compounds by non-heme iron complex: a computational case study on the comparative oxidative ability of ferric-hydroperoxo and high-valent Fe(IV)═O and Fe(V)═O intermediates.
    Ansari A; Kaushik A; Rajaraman G
    J Am Chem Soc; 2013 Mar; 135(11):4235-49. PubMed ID: 23373840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic insight into hydrosilylation reactions catalyzed by high valent ReX (X = O, NAr, or N) complexes: the silane (Si-H) does not add across the metal-ligand multiple bond.
    Du G; Fanwick PE; Abu-Omar MM
    J Am Chem Soc; 2007 Apr; 129(16):5180-7. PubMed ID: 17388597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas-phase reactions of [VO2(OH)2]- and [V2O5(OH)]- with methanol: experiment and theory.
    Harris BL; Waters T; Khairallah GN; O'Hair RA
    J Phys Chem A; 2013 Feb; 117(6):1124-35. PubMed ID: 22889366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.