BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 29069280)

  • 1. PROSPERous: high-throughput prediction of substrate cleavage sites for 90 proteases with improved accuracy.
    Song J; Li F; Leier A; Marquez-Lago TT; Akutsu T; Haffari G; Chou KC; Webb GI; Pike RN; Hancock J
    Bioinformatics; 2018 Feb; 34(4):684-687. PubMed ID: 29069280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.
    Song J; Tan H; Perry AJ; Akutsu T; Webb GI; Whisstock JC; Pike RN
    PLoS One; 2012; 7(11):e50300. PubMed ID: 23209700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Procleave: Predicting Protease-specific Substrate Cleavage Sites by Combining Sequence and Structural Information.
    Li F; Leier A; Liu Q; Wang Y; Xiang D; Akutsu T; Webb GI; Smith AI; Marquez-Lago T; Li J; Song J
    Genomics Proteomics Bioinformatics; 2020 Feb; 18(1):52-64. PubMed ID: 32413515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cascleave: towards more accurate prediction of caspase substrate cleavage sites.
    Song J; Tan H; Shen H; Mahmood K; Boyd SE; Webb GI; Akutsu T; Whisstock JC
    Bioinformatics; 2010 Mar; 26(6):752-60. PubMed ID: 20130033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites.
    Li F; Chen J; Leier A; Marquez-Lago T; Liu Q; Wang Y; Revote J; Smith AI; Akutsu T; Webb GI; Kurgan L; Song J
    Bioinformatics; 2020 Feb; 36(4):1057-1065. PubMed ID: 31566664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PoPS: a computational tool for modeling and predicting protease specificity.
    Boyd SE; Garcia de la Banda M; Pike RN; Whisstock JC; Rudy GB
    Proc IEEE Comput Syst Bioinform Conf; 2004; ():372-81. PubMed ID: 16448030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PoPS: a computational tool for modeling and predicting protease specificity.
    Boyd SE; Pike RN; Rudy GB; Whisstock JC; Garcia de la Banda M
    J Bioinform Comput Biol; 2005 Jun; 3(3):551-85. PubMed ID: 16108084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iProt-Sub: a comprehensive package for accurately mapping and predicting protease-specific substrates and cleavage sites.
    Song J; Wang Y; Li F; Akutsu T; Rawlings ND; Webb GI; Chou KC
    Brief Bioinform; 2019 Mar; 20(2):638-658. PubMed ID: 29897410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Twenty years of bioinformatics research for protease-specific substrate and cleavage site prediction: a comprehensive revisit and benchmarking of existing methods.
    Li F; Wang Y; Li C; Marquez-Lago TT; Leier A; Rawlings ND; Haffari G; Revote J; Akutsu T; Chou KC; Purcell AW; Pike RN; Webb GI; Ian Smith A; Lithgow T; Daly RJ; Whisstock JC; Song J
    Brief Bioinform; 2019 Nov; 20(6):2150-2166. PubMed ID: 30184176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GraBCas: a bioinformatics tool for score-based prediction of Caspase- and Granzyme B-cleavage sites in protein sequences.
    Backes C; Kuentzer J; Lenhof HP; Comtesse N; Meese E
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W208-13. PubMed ID: 15980455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteolysis to Identify Protease Substrates: Cleave to Decipher.
    Bhagwat SR; Hajela K; Kumar A
    Proteomics; 2018 Jul; 18(13):e1800011. PubMed ID: 29710386
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome.
    Li F; Li C; Wang M; Webb GI; Zhang Y; Whisstock JC; Song J
    Bioinformatics; 2015 May; 31(9):1411-9. PubMed ID: 25568279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ProsperousPlus: a one-stop and comprehensive platform for accurate protease-specific substrate cleavage prediction and machine-learning model construction.
    Li F; Wang C; Guo X; Akutsu T; Webb GI; Coin LJM; Kurgan L; Song J
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37874948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. POSSUM: a bioinformatics toolkit for generating numerical sequence feature descriptors based on PSSM profiles.
    Wang J; Yang B; Revote J; Leier A; Marquez-Lago TT; Webb G; Song J; Chou KC; Lithgow T
    Bioinformatics; 2017 Sep; 33(17):2756-2758. PubMed ID: 28903538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Software-aided workflow for predicting protease-specific cleavage sites using physicochemical properties of the natural and unnatural amino acids in peptide-based drug discovery.
    Radchenko T; Fontaine F; Morettoni L; Zamora I
    PLoS One; 2019; 14(1):e0199270. PubMed ID: 30620739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Proteasix Ontology.
    Arguello Casteleiro M; Klein J; Stevens R
    J Biomed Semantics; 2016 Jun; 7(1):33. PubMed ID: 27259807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protease proteomics: revealing protease in vivo functions using systems biology approaches.
    Doucet A; Overall CM
    Mol Aspects Med; 2008 Oct; 29(5):339-58. PubMed ID: 18571712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CalCleaveMKL: a Tool for Calpain Cleavage Prediction.
    duVerle DA; Mamitsuka H
    Methods Mol Biol; 2019; 1915():121-147. PubMed ID: 30617801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design.
    Pethe MA; Rubenstein AB; Khare SD
    J Mol Biol; 2017 Jan; 429(2):220-236. PubMed ID: 27932294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. N- and C-terminal degradomics: new approaches to reveal biological roles for plant proteases from substrate identification.
    Huesgen PF; Overall CM
    Physiol Plant; 2012 May; 145(1):5-17. PubMed ID: 22023699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.