These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 29069595)

  • 1. Cortical Interneurons Differentially Shape Frequency Tuning following Adaptation.
    Natan RG; Rao W; Geffen MN
    Cell Rep; 2017 Oct; 21(4):878-890. PubMed ID: 29069595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diversity of Receptive Fields and Sideband Inhibition with Complex Thalamocortical and Intracortical Origin in L2/3 of Mouse Primary Auditory Cortex.
    Liu J; Kanold PO
    J Neurosci; 2021 Apr; 41(14):3142-3162. PubMed ID: 33593857
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.
    Li LY; Xiong XR; Ibrahim LA; Yuan W; Tao HW; Zhang LI
    Cereb Cortex; 2015 Jul; 25(7):1782-91. PubMed ID: 24425250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parvalbumin-expressing inhibitory interneurons in auditory cortex are well-tuned for frequency.
    Moore AK; Wehr M
    J Neurosci; 2013 Aug; 33(34):13713-23. PubMed ID: 23966693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network-Level Control of Frequency Tuning in Auditory Cortex.
    Kato HK; Asinof SK; Isaacson JS
    Neuron; 2017 Jul; 95(2):412-423.e4. PubMed ID: 28689982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific Early and Late Oddball-Evoked Responses in Excitatory and Inhibitory Neurons of Mouse Auditory Cortex.
    Chen IW; Helmchen F; Lütcke H
    J Neurosci; 2015 Sep; 35(36):12560-73. PubMed ID: 26354921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary control of sensory adaptation by two types of cortical interneurons.
    Natan RG; Briguglio JJ; Mwilambwe-Tshilobo L; Jones SI; Aizenberg M; Goldberg EM; Geffen MN
    Elife; 2015 Oct; 4():. PubMed ID: 26460542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Short-Term Plasticity of PV and SST Neurons Accounts for Adaptation and Facilitation of Cortical Neurons to Auditory Tones.
    Seay MJ; Natan RG; Geffen MN; Buonomano DV
    J Neurosci; 2020 Nov; 40(48):9224-9235. PubMed ID: 33097639
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemogenetic Activation of Cortical Parvalbumin-Positive Interneurons Reverses Noise-Induced Impairments in Gap Detection.
    Masri S; Chan N; Marsh T; Zinsmaier A; Schaub D; Zhang L; Wang W; Bao S
    J Neurosci; 2021 Oct; 41(42):8848-8857. PubMed ID: 34452937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immediate manifestation of acoustic trauma in the auditory cortex is layer specific and cell type dependent.
    Novák O; Zelenka O; Hromádka T; Syka J
    J Neurophysiol; 2016 Apr; 115(4):1860-74. PubMed ID: 26823513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic Zinc Enhances Inhibition Mediated by Somatostatin, but not Parvalbumin, Cells in Mouse Auditory Cortex.
    Kouvaros S; Kumar M; Tzounopoulos T
    Cereb Cortex; 2020 Jun; 30(7):3895-3909. PubMed ID: 32090251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reliable Sensory Processing in Mouse Visual Cortex through Cooperative Interactions between Somatostatin and Parvalbumin Interneurons.
    Rikhye RV; Yildirim M; Hu M; Breton-Provencher V; Sur M
    J Neurosci; 2021 Oct; 41(42):8761-8778. PubMed ID: 34493543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parvalbumin-expressing interneurons can act solo while somatostatin-expressing interneurons act in chorus in most cases on cortical pyramidal cells.
    Safari MS; Mirnajafi-Zadeh J; Hioki H; Tsumoto T
    Sci Rep; 2017 Oct; 7(1):12764. PubMed ID: 28986578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective activation of parvalbumin- or somatostatin-expressing interneurons triggers epileptic seizurelike activity in mouse medial entorhinal cortex.
    Yekhlef L; Breschi GL; Lagostena L; Russo G; Taverna S
    J Neurophysiol; 2015 Mar; 113(5):1616-30. PubMed ID: 25505119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap encoding by parvalbumin-expressing interneurons in auditory cortex.
    Keller CH; Kaylegian K; Wehr M
    J Neurophysiol; 2018 Jul; 120(1):105-114. PubMed ID: 29589814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of response reliability by parvalbumin-expressing interneurons in visual cortex.
    Zhu Y; Qiao W; Liu K; Zhong H; Yao H
    Nat Commun; 2015 Apr; 6():6802. PubMed ID: 25869033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin-Expressing Interneurons in the Auditory Cortex Mediate Sustained Suppression by Spectral Surround.
    Lakunina AA; Nardoci MB; Ahmadian Y; Jaramillo S
    J Neurosci; 2020 Apr; 40(18):3564-3575. PubMed ID: 32220950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organization of Cortical and Thalamic Input to Inhibitory Neurons in Mouse Motor Cortex.
    Okoro SU; Goz RU; Njeri BW; Harish M; Ruff CF; Ross SE; Gerfen C; Hooks BM
    J Neurosci; 2022 Oct; 42(43):8095-8112. PubMed ID: 36104281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional Regulation of Innate and Learned Behaviors That Rely on Frequency Discrimination by Cortical Inhibitory Neurons.
    Aizenberg M; Mwilambwe-Tshilobo L; Briguglio JJ; Natan RG; Geffen MN
    PLoS Biol; 2015 Dec; 13(12):e1002308. PubMed ID: 26629746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distinct Roles of Parvalbumin- and Somatostatin-Expressing Interneurons in Working Memory.
    Kim D; Jeong H; Lee J; Ghim JW; Her ES; Lee SH; Jung MW
    Neuron; 2016 Nov; 92(4):902-915. PubMed ID: 27746132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.