These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 29069896)

  • 1. Understanding the Lithiation of the Sn Anode for High-Performance Li-Ion Batteries with Exploration of Novel Li-Sn Compounds at Ambient and Moderately High Pressure.
    Sen R; Johari P
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40197-40206. PubMed ID: 29069896
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes.
    Park AR; Park CM
    ACS Nano; 2017 Jun; 11(6):6074-6084. PubMed ID: 28485960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Focused Ion Beam Scanning Electron Microscope Study of Microstructural Evolution of Single Tin Particle Anode for Li-Ion Batteries.
    Zhou X; Li T; Cui Y; Fu Y; Liu Y; Zhu L
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):1733-1738. PubMed ID: 30605303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles prediction on antimony-doping effects on the cyclic stability of tin anodes for lithium-ion batteries.
    Yu J; Yang TH; Hao W; Lee M; Hwang GS
    Phys Chem Chem Phys; 2022 Jul; 24(29):17542-17546. PubMed ID: 35822323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From chemistry to mechanics: bulk modulus evolution of Li-Si and Li-Sn alloys via the metallic electronegativity scale.
    Li K; Xie H; Liu J; Ma Z; Zhou Y; Xue D
    Phys Chem Chem Phys; 2013 Oct; 15(40):17658-63. PubMed ID: 24042730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile Preparation of Graphene/SnO₂ Xerogel Hybrids as the Anode Material in Li-Ion Batteries.
    Li ZF; Liu Q; Liu Y; Yang F; Xin L; Zhou Y; Zhang H; Stanciu L; Xie J
    ACS Appl Mater Interfaces; 2015 Dec; 7(49):27087-95. PubMed ID: 26422399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction Mechanism of the Sn
    Dong Z; Wang Q; Zhang R; Chernova NA; Omenya F; Ji D; Whittingham MS
    ACS Omega; 2019 Dec; 4(27):22345-22355. PubMed ID: 31909317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life.
    Huang X; Cui S; Chang J; Hallac PB; Fell CR; Luo Y; Metz B; Jiang J; Hurley PT; Chen J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1490-3. PubMed ID: 25504807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery.
    Shin JH; Song JY
    Nano Converg; 2016; 3(1):9. PubMed ID: 28191419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ab initio studies on Li4+xTi5O12 compounds as anode materials for lithium-ion batteries.
    Zhong Z; Ouyang C; Shi S; Lei M
    Chemphyschem; 2008 Oct; 9(14):2104-8. PubMed ID: 18729122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode.
    Cook JB; Detsi E; Liu Y; Liang YL; Kim HS; Petrissans X; Dunn B; Tolbert SH
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):293-303. PubMed ID: 28005328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical studies of lithium incorporation into α-Sn(100).
    Kaghazchi P
    J Chem Phys; 2013 Feb; 138(5):054706. PubMed ID: 23406140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Phase Lithium Metal Anode Containing a Polysulfide-Induced Solid Electrolyte Interphase and Nanostructured Graphene Framework for Lithium-Sulfur Batteries.
    Cheng XB; Peng HJ; Huang JQ; Zhang R; Zhao CZ; Zhang Q
    ACS Nano; 2015 Jun; 9(6):6373-82. PubMed ID: 26042545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A density functional theory study of high-performance pre-lithiated MS
    Liu T; Jin Z; Liu DX; Du C; Wang L; Lin H; Li Y
    Sci Rep; 2020 Apr; 10(1):6897. PubMed ID: 32327695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and Electrochemical Properties of Type VIII Ba
    Dopilka A; Childs A; Ovchinnikov A; Zhao R; Bobev S; Peng X; Chan CK
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42564-42578. PubMed ID: 34477361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germanium tin alloy nanowires as anode materials for high performance Li-ion batteries.
    Doherty J; McNulty D; Biswas S; Moore K; Conroy M; Bangert U; O'Dwyer C; Holmes JD
    Nanotechnology; 2020 Apr; 31(16):165402. PubMed ID: 31891917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Globally stable structures of LixZn (x = 1-4) compounds at high pressures.
    Bi H; Zhang S; Wei S; Wang J; Zhou D; Li Q; Ma Y
    Phys Chem Chem Phys; 2016 Feb; 18(6):4437-43. PubMed ID: 26791574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase evolution of tin nanocrystals in lithium ion batteries.
    Im HS; Cho YJ; Lim YR; Jung CS; Jang DM; Park J; Shojaei F; Kang HS
    ACS Nano; 2013 Dec; 7(12):11103-11. PubMed ID: 24195495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanical Properties and Chemical Reactivity of Li
    Xu Y; Stetson C; Wood K; Sivonxay E; Jiang C; Teeter G; Pylypenko S; Han SD; Persson KA; Burrell A; Zakutayev A
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38558-38564. PubMed ID: 30362716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen-Doped Carbon-Encapsulated SnO2@Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries.
    Li Y; Zhang H; Chen Y; Shi Z; Cao X; Guo Z; Shen PK
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):197-207. PubMed ID: 26654790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.