BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 29070681)

  • 1. Differential catalytic promiscuity of the alkaline phosphatase superfamily bimetallo core reveals mechanistic features underlying enzyme evolution.
    Sunden F; AlSadhan I; Lyubimov A; Doukov T; Swan J; Herschlag D
    J Biol Chem; 2017 Dec; 292(51):20960-20974. PubMed ID: 29070681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis maps interactions that enhance cognate and limit promiscuous catalysis by an alkaline phosphatase superfamily phosphodiesterase.
    Wiersma-Koch H; Sunden F; Herschlag D
    Biochemistry; 2013 Dec; 52(51):9167-76. PubMed ID: 24261692
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution.
    Zalatan JG; Fenn TD; Brunger AT; Herschlag D
    Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional interrelationships in the alkaline phosphatase superfamily: phosphodiesterase activity of Escherichia coli alkaline phosphatase.
    O'Brien PJ; Herschlag D
    Biochemistry; 2001 May; 40(19):5691-9. PubMed ID: 11341834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM/MM analysis suggests that Alkaline Phosphatase (AP) and nucleotide pyrophosphatase/phosphodiesterase slightly tighten the transition state for phosphate diester hydrolysis relative to solution: implication for catalytic promiscuity in the AP superfamily.
    Hou G; Cui Q
    J Am Chem Soc; 2012 Jan; 134(1):229-46. PubMed ID: 22097879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic and Evolutionary Insights from Comparative Enzymology of Phosphomonoesterases and Phosphodiesterases across the Alkaline Phosphatase Superfamily.
    Sunden F; AlSadhan I; Lyubimov AY; Ressl S; Wiersma-Koch H; Borland J; Brown CL; Johnson TA; Singh Z; Herschlag D
    J Am Chem Soc; 2016 Nov; 138(43):14273-14287. PubMed ID: 27670607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution analysis of Zn(2+) coordination in the alkaline phosphatase superfamily by EXAFS and x-ray crystallography.
    Bobyr E; Lassila JK; Wiersma-Koch HI; Fenn TD; Lee JJ; Nikolic-Hughes I; Hodgson KO; Rees DC; Hedman B; Herschlag D
    J Mol Biol; 2012 Jan; 415(1):102-17. PubMed ID: 22056344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative enzymology in the alkaline phosphatase superfamily to determine the catalytic role of an active-site metal ion.
    Zalatan JG; Fenn TD; Herschlag D
    J Mol Biol; 2008 Dec; 384(5):1174-89. PubMed ID: 18851975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new member of the alkaline phosphatase superfamily with a formylglycine nucleophile: structural and kinetic characterisation of a phosphonate monoester hydrolase/phosphodiesterase from Rhizobium leguminosarum.
    Jonas S; van Loo B; Hyvönen M; Hollfelder F
    J Mol Biol; 2008 Dec; 384(1):120-36. PubMed ID: 18793651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases.
    Gijsbers R; Ceulemans H; Stalmans W; Bollen M
    J Biol Chem; 2001 Jan; 276(2):1361-8. PubMed ID: 11027689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promiscuous sulfatase activity and thio-effects in a phosphodiesterase of the alkaline phosphatase superfamily.
    Lassila JK; Herschlag D
    Biochemistry; 2008 Dec; 47(48):12853-9. PubMed ID: 18975918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Balancing Specificity and Promiscuity in Enzyme Evolution: Multidimensional Activity Transitions in the Alkaline Phosphatase Superfamily.
    van Loo B; Bayer CD; Fischer G; Jonas S; Valkov E; Mohamed MF; Vorobieva A; Dutruel C; Hyvönen M; Hollfelder F
    J Am Chem Soc; 2019 Jan; 141(1):370-387. PubMed ID: 30497259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative Electrostatic Interactions Drive Functional Evolution in the Alkaline Phosphatase Superfamily.
    Barrozo A; Duarte F; Bauer P; Carvalho AT; Kamerlin SC
    J Am Chem Soc; 2015 Jul; 137(28):9061-76. PubMed ID: 26091851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promiscuity in alkaline phosphatase superfamily. Unraveling evolution through molecular simulations.
    López-Canut V; Roca M; Bertrán J; Moliner V; Tuñón I
    J Am Chem Soc; 2011 Aug; 133(31):12050-62. PubMed ID: 21609015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of PhnP, a phosphodiesterase of the carbon-phosphorus lyase pathway for phosphonate degradation.
    Podzelinska K; He SM; Wathier M; Yakunin A; Proudfoot M; Hove-Jensen B; Zechel DL; Jia Z
    J Biol Chem; 2009 Jun; 284(25):17216-17226. PubMed ID: 19366688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promiscuity and electrostatic flexibility in the alkaline phosphatase superfamily.
    Pabis A; Kamerlin SC
    Curr Opin Struct Biol; 2016 Apr; 37():14-21. PubMed ID: 26716576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer.
    Pabis A; Duarte F; Kamerlin SC
    Biochemistry; 2016 Jun; 55(22):3061-81. PubMed ID: 27187273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and mechanistic insights into C-P bond hydrolysis by phosphonoacetate hydrolase.
    Agarwal V; Borisova SA; Metcalf WW; van der Donk WA; Nair SK
    Chem Biol; 2011 Oct; 18(10):1230-40. PubMed ID: 22035792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facilitating the Evolution of Esterase Activity from a Promiscuous Enzyme (Mhg) with Catalytic Functions of Amide Hydrolysis and Carboxylic Acid Perhydrolysis by Engineering the Substrate Entrance Tunnel.
    Yan X; Wang J; Sun Y; Zhu J; Wu S
    Appl Environ Microbiol; 2016 Nov; 82(22):6748-6756. PubMed ID: 27613682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.